Claim Missing Document
Check
Articles

Found 34 Documents
Search

PERFORMANCE OF TEXT SIMILARITY ALGORITHMS FOR ESSAY ANSWER SCORING IN ONLINE EXAMINATIONS Susanto, Muhammad Riza Radyaka; Husni Thamrin; Naufal Azmi Verdikha
Jurnal Teknik Informatika (Jutif) Vol. 4 No. 6 (2023): JUTIF Volume 4, Number 6, Desember 2023
Publisher : Informatika, Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52436/1.jutif.2023.4.6.1025

Abstract

The purpose of assessment is to determine learning success. Exams with question descriptions have several advantages, including ease of preparation and the ability to reveal student comprehension and originality. The problem with space is that it takes time to fix. Therefore, it is important to develop algorithms and software that automatically evaluate space. With the help of this algorithm and this software, you can solve some exam and assessment problems. This study aims to investigate similarity algorithms that approximate human patterns in evaluating ambiguous answers. This study examines his five similarity algorithms, including TF-IDF and LSA. The data was a collection of correct answers with a total of 371 texts. The similarity algorithm's performance was compared with human correction results. Evaluation was performed using Root Mean Square Error (RMSE). This study shows that his TF-IDF algorithm like Jaccard has the lowest his RMSE compared to human judgement. However, the LSA algorithm tended better to follow human rating patterns for descriptive tests..
PEMBUATAN APLIKASI ABSENSI DAN DOORPRIZE PENGUNJUNG BAPPEDA BERBASIS WEB PADA EVENT KALTIM EXPO 2023 Nurdiansyah, Rendy; Takhta Perlawanan Putra Sinawang; Reza Andriyanti; Naufal Azmi Verdikha
Jurnal Gembira: Pengabdian Kepada Masyarakat Vol 1 No 06 (2023): DESEMBER 2023
Publisher : Media Inovasi Pendidikan dan Publikasi

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Badan Perencanaan Pembangunan Daerah (BAPPEDA) adalah lembaga penting dalam perencanaan dan pembangunan daerah di Indonesia. Keterlibatan BAPPEDA dalam Kaltim Expo, sebagai bagian dari peringatan Hari Ulang Tahun Republik Indonesia ke-78, melibatkan presentasi kinerja serta hasil pencapaian, serta penyelenggaraan kuis dan undian doorprize untuk menarik perhatian pengunjung. Dalam upaya meningkatkan pengalaman pengunjung, BAPPEDA membutuhkan penggunaan teknologi terkini dengan sistem absensi yang efisien dan menarik, serta integrasi hadiah-hadiah menarik ke dalam sistem tersebut. Untuk memenuhi kebutuhan tersebut, dilakukan perancangan sistem absensi dan aplikasi doorprize berbasis web. Hal ini bertujuan untuk mendapatkan data absensi pengunjung secara efisien, memudahkan proses, dan menciptakan pengalaman yang lebih menarik bagi pengunjung KALTIM EXPO 2023. Pengembangan sistem absensi dan doorprize ini menggunakan metode Software Development Life Cycle (SDLC) dengan pendekatan Agile, fokus pada kerja tim kolaboratif yang responsif terhadap perubahan. Penggunaan bahasa pemrograman HTML, PHP, CSS, JS, dan Bootstrap 5 digunakan untuk tampilan, serta MySQL sebagai basis data.
Multilayer Perceptron and TF-IDF in the Classification of Hate Speech on Twitter in Indonesian Syahrandi, Akmal; Latipah, Asslia Johar; Verdikha, Naufal Azmi
JSE Journal of Science and Engineering Vol. 2 No. 1 (2023): Journal of Science and Engineering
Publisher : LPPI Universitas Muhammadiyah Kalimantan Timur (UMKT)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30650/jse.v1i1.3773

Abstract

Twitter nowadays is one of the popular social media which currently has over 300millions accounts, twitter is the rich source to learn about people’s opion and sentimental analysis. However, this also brings new problems where the practice of hate speech. This research classifies of hate speech on social media. Evaluation using dataset from previous research Ibrohim&Budi (2019), then using classification method Multilayer Perceptron which combined with feature extraction to be able to detect negations and weighting uses Term Frequency – Inverse Document Frequency (TF-IDF). Results show that the F1 score gives an accuracy rate of up to 74.51%. This research has a reasonably good effectiveness from combining the TF-IDF and Multilayer Perceptron methods, considering the results obtained from the F1 Score evaluation value.
Indonesian Automated Essay Scoring with Bag of Word and Support Vector Regression Verdikha, Naufal Azmi; Dwiagam, Junianda Haris; Hasudungan, Rofilde
JSE Journal of Science and Engineering Vol. 2 No. 2 (2024): Journal of Science and Engineering
Publisher : LPPI Universitas Muhammadiyah Kalimantan Timur (UMKT)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30650/jse.v1i2.3841

Abstract

Essay is one of the test questions to measure students' understanding of learning. Respondents can organize the answers to each question in their own language style, so it takes time to make corrections. It takes a system that can assess essay answers automatically quickly and accurately. Auto Essay Scoring (AES) is a tool that can assign grades or scores to answers in the form of essays automatically. In giving grades automatically, AES requires machine learning with training data that contains answer data that has been given a value by the assessor. In this study, AES was used to assess the Indonesian language midterm exams using the Bag of Word extraction feature and using Support Vector Regression. The Root Mean Square Error value obtained when evaluating AES is 1.99.