p-Index From 2021 - 2026
6.525
P-Index
This Author published in this journals
All Journal International Journal of Electrical and Computer Engineering Bulletin of Electrical Engineering and Informatics Bulletin of Electrical Engineering and Informatics JUITA : Jurnal Informatika Register: Jurnal Ilmiah Teknologi Sistem Informasi Bulletin of Electrical Engineering and Informatics Sistemasi: Jurnal Sistem Informasi Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Jurnal Informatika Jurnal Teknik Komputer AMIK BSI Jurnal Khatulistiwa Informatika Paradigma Ekspektra: Jurnal Bisnis & Manajemen JITK (Jurnal Ilmu Pengetahuan dan Komputer) MATRIK : Jurnal Manajemen, Teknik Informatika, dan Rekayasa Komputer SEINASI-KESI International Journal for Educational and Vocational Studies Jurnal Mantik Jurnal Teknik Informatika C.I.T. Medicom Journal of Intelligent Decision Support System (IDSS) Jurnal Bumigora Information Technology (BITe) Akrab Juara : Jurnal Ilmu-ilmu Sosial Jurnal Sistem Informasi IAIC Transactions on Sustainable Digital Innovation (ITSDI) Lumbung Inovasi: Jurnal Pengabdian Kepada Masyarakat Journal Software, Hardware and Information Technology International Journal of Basic and Applied Science Reputasi: Jurnal Rekayasa Perangkat Lunak Jurnal Sains Informatika Terapan (JSIT) INTERNATIONAL JOURNAL OF MECHANICAL COMPUTATIONAL AND MANUFACTURING RESEARCH Paradigma Indonesian Journal Computer Science (ijcs) Jurnal MENTARI: Manajemen, Pendidikan dan Teknologi Informasi International Journal of Enterprise Modelling Jurnal Teknoinfo
Claim Missing Document
Check
Articles

Klasifikasi Nilai Ujian Siswa Berdasarkan Kebiasaan Belajar Menggunakan K-Nearest Neighbor dan Support Vector Machine Kotjek, Rafie; Pricillia; Wijaya, Filzah; Wahyudi, Mochamad; Sumanto; Budiman, Ade
Jurnal Sains Informatika Terapan Vol. 4 No. 2 (2025): Jurnal Sains Informatika Terapan (Juni, 2025)
Publisher : Riset Sinergi Indonesia (RISINDO)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62357/jsit.v4i2.612

Abstract

Kinerja akademik siswa merupakan indikator penting keberhasilan belajar, namun penilaian konvensional sering kali belum optimal dalam memanfaatkan data kebiasaan dan gaya hidup siswa. Penelitian ini bertujuan untuk mengklasifikasikan nilai ujian siswa (Rendah, Sedang, Tinggi) berdasarkan kebiasaan belajar menggunakan algoritma K-Nearest Neighbor (kNN) dan Support Vector Machine (SVM), serta membandingkan performa keduanya. Data sebanyak 1000 entri siswa dari Kaggle.com diolah melalui tahap pra-pemrosesan yang meliputi diskritisasi nilai ujian menjadi kategori dan pemilihan fitur yang relevan, seperti jam belajar, persentase kehadiran, waktu tidur, dan peringkat kesehatan mental. Pembagian data dilakukan dengan random sampling (90% training dan 10% testing) yang diulang 10 kali. Hasil evaluasi menunjukkan kNN dengan N=10 mencapai akurasi tertinggi 0.982. Sementara itu, SVM dengan kernel Linear memperoleh akurasi 0.974 , diikuti RBF dengan 0.939 , dan Polynomial dengan 0.946 , sedangkan kernel Sigmoid hanya 0.712. Performa terbaik kNN (N=10) lebih lanjut dikonfirmasi melalui confusion matrix, menunjukkan tingkat kesalahan klasifikasi yang sangat rendah dan prediksi yang konsisten. Penelitian ini menyimpulkan bahwa algoritma k-NN, khususnya dengan N=10, adalah pendekatan yang paling akurat dan efektif untuk klasifikasi nilai ujian berdasarkan kebiasaan siswa, mendukung pihak sekolah dalam prediksi dan perencanaan pendidikan yang lebih baik.
Developing an Enhanced Algorithms to Solve Mixed Integer Non-Linear Programming Problems Based on a Feasible Neighborhood Search Strategy Wahyudi, Mochamad; Firmansyah, Firmansyah; Sihotang, Hengki Tamando; Pujiastuti, Lise; Mawengkang, Herman
Register: Jurnal Ilmiah Teknologi Sistem Informasi Vol 9 No 2 (2023): July
Publisher : Information Systems - Universitas Pesantren Tinggi Darul Ulum

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26594/register.v9i2.3706

Abstract

Engineering optimization problems often involve nonlinear objective functions, which can capture complex relationships and dependencies between variables. This study focuses on a unique nonlinear mathematics programming problem characterized by a subset of variables that can only take discrete values and are linearly separable from the continuous variables. The combination of integer variables and non-linearities makes this problem much more complex than traditional nonlinear programming problems with only continuous variables. Furthermore, the presence of integer variables can result in a combinatorial explosion of potential solutions, significantly enlarging the search space and making it challenging to explore effectively. This issue becomes especially challenging for larger problems, leading to long computation times or even infeasibility. To address these challenges, we propose a method that employs the "active constraint" approach in conjunction with the release of nonbasic variables from their boundaries. This technique compels suitable non-integer fundamental variables to migrate to their neighboring integer positions. Additionally, we have researched selection criteria for choosing a nonbasic variable to use in the integerizing technique. Through implementation and testing on various problems, these techniques have proven to be successful.
IMPLEMENTASI WIDE AREA NETWORK MENGGUNAKAN TEKNOLOGI VPN BERBASISKAN IP MULTI PROTOCOL LABEL SWITCHING (MPLS) : STUDI KASUS PADA KAMPUS BINA SARANA INFORMATIKA Wahyudi, Mochamad
Paradigma Vol 9, No 1 (2007): Periode Januari 2007
Publisher : LPPM Universitas Bina Sarana Informatika

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31294/p.v9i1.1150

Abstract

Wide Area Network (WAN) dipergunakan untuk menghubungkan jaringan-jaringan Local Area Network (LAN) satu dengan lainnya yang berdekatan maupun yang berjauhan dan menggunakan protokol yang sama atau berbeda-beda. Teknologi yang dapat dipergunakan untuk dapat menghubungkan WAN, antara lain: Dial Up, Leased Line, VSAT, X.25, Frame Relay, Virtual Private Network (VPN) dan lain-lain. Sedangkan teknologi terbaru yang saat ini sedang dikembangkan untuk membangun jaringan WAN yang baik (realible) dan permanen adalah Virtual Private Network (VPN) berbasis IP Multi Protocol Label Switch (VPN IP MPLS). VPN IP MPLS ini adalah suatu layanan komunikasi data any to any connections berbasis IP Multi Protocol Label Switch dengan menggunakan peralatan (hardware) dari perusahaan Cisco (berupa Cisco Router dan Cisco Switch Catalist). Kampus Bina Sarana Informatika (BSI) menggunakan teknologi VPN IP MPLS untuk menghubungkan seluruh kampusnya yang terdiri dari 35 lokasi yang tersebar dibeberapa kota yang ada di Indonesia. Kampus BSI menerapkan sistem domain berbasis sistem Operasi Windows Server 2003 untuk semua untuk yang ada dan menjalankan aplikasi online yang disebut dengan intranet.bsi.ac.id serta beberapa aplikasi lain. Untuk menghubungkan seluruh Kampus BSI jaringan global (internet), semua Kampus BSI terhubung melalui saluran Leased Line sebesar 2.048 Kbps yang terdapat pada Kampus BSI Menara Salemba yang berfungsi sebagai Backhole. 
Comparison of Supervised Learning Classification Methods on Accreditation Data of Private Higher Education Institutions Noviyanto; Wahyudi, Mochamad; Sumanto, Sumanto
Paradigma - Jurnal Komputer dan Informatika Vol. 26 No. 1 (2024): March 2024 Period
Publisher : LPPM Universitas Bina Sarana Informatika

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31294/p.v26i1.3306

Abstract

This research aims to analyze and compare supervised learning classification methods using a case study of accreditation data for private higher education institutions within the LLDikti Region III contained in BAN-PT. In addition, this research also uses Weka machine learning software in its calculations. The initial step taken is to prepare the software used for supervised learning analysis, then pre-processing the data, namely labeling data that has a categorical data type, after that determining data for testing data. The next step is to test each classification method. The methods used for comparison are logistic regression, K-nearest neighbor, naive bayes, super vector machine, and random forest. Based on the calculation results, the Kappa Statistic and Root mean squared error values obtained are 1 and 0 for the logistic regression method, 0.979 and 0.0061 for the K-nearest neighbor method, 1 and 0.2222 for the super vector machine method, 0.969 and 0.0341 for the naive bayes method, 1 and 0 for the decision tree method, and 0.5776 and 0.1949 for the random forest method, respectively. The logistic regression and decision tree methods in this study get Kappa Statistic and Root mean squared error values of 1 and 0 respectively so that they are said to be good and acceptable, thus the two classification methods are the most appropriate methods and are considered to have the highest accuracy.
Penerapan Metode Rapid Application Development Dalam Pengembangan Aplikasi Persediaan Material Panel Listrik Berbasis Web Azis, Munawar Abdul; Wahyudi, Mochamad; Aryanti, Riska
Reputasi: Jurnal Rekayasa Perangkat Lunak Vol. 4 No. 2 (2023): November 2023
Publisher : LPPM Universitas Bina Sarana Informatika

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31294/reputasi.v4i2.2496

Abstract

PT Indomitra Global is a company engaged in electrical contracting services and provides various types of electrical panels needed by clients. Electrical panels require many important materials, for example mcb, sockets, cables, and many other important components. The material inventory system carried out at PT Indomitra Global still uses a manual method in the material inventory system. This process has several obstacles, namely not having a centralized database that makes material inventory data vulnerable to loss and there are often differences in the suitability of the amount of material in the warehouse with the amount in Microsoft Excel, because data management is still not easy enough and due to human error or input errors. On the basis of this problem, a web-based material inventory application was made using the Rapid Application Development (RAD) method. The material inventory system produced in this study is able to handle material data management which previously was still not easy enough to do, such as searching for data, managing incoming and outgoing material transaction data and making it easier to generate incoming and outgoing material reports based on time periods
Pengembangan Sistem Deteksi Objek Botol Real-Time dengan YOLOv8 untuk Aplikasi Vision Triyanto, Dedi; Zidan, Muhammad; Wahyudi, Mochamad; Pujiastuti, Lise; Sumanto, Sumanto
Indonesian Journal Computer Science Vol. 3 No. 1 (2024): April 2024
Publisher : LPPM Universitas Bina Sarana Informatika

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31294/ijcs.v3i1.6070

Abstract

Plastik daur ulang berperan penting dalam menanggulangi masalah limbah lingkungan sekaligus mendukung praktik keberlanjutan. Penelitian ini bertujuan mengembangkan sistem deteksi botol plastik dan kaleng daur ulang secara real-time menggunakan algoritma YOLOv8 yang terkenal akan kecepatan dan akurasinya. Dengan memanfaatkan dataset yang terdiri dari 2.900 gambar dan melatih model melalui Google Colab selama 25 epoch, penelitian ini berhasil menunjukkan performa luar biasa dari YOLOv8, dengan hasil mAP sebesar 99,5%, precision 99,7%, dan recall 99,5%. Model ini terbukti sangat efektif dalam mendeteksi objek daur ulang, memberikan prediksi yang tepat tanpa kesalahan negatif pada confusion matrix. Untuk penelitian lanjutan, disarankan menambah variasi kelas objek seperti botol kaca dan karet serta memperluas dataset guna meningkatkan generalisasi model. Selain itu, pengujian dalam kondisi nyata sangat diperlukan untuk memastikan kinerja optimal dalam lingkungan yang lebih kompleks. Pendekatan serupa dalam penelitian sebelumnya juga telah membuktikan kinerja unggul dalam deteksi real-time, menjadikan metode ini salah satu yang terdepan dalam pengembangan teknologi berbasis YOLO.
Deteksi dan Prediksi Cerdas Penyakit Paru-Paru dengan Algoritma Random Fores Kurniawan, Deny; Wahyudi, Mochamad; Pujiastuti, Lise; Sumanto, Sumanto
Indonesian Journal Computer Science Vol. 3 No. 1 (2024): April 2024
Publisher : LPPM Universitas Bina Sarana Informatika

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31294/ijcs.v3i1.6071

Abstract

Penyakit paru-paru, seperti COPD, kanker paru-paru, dan asma, adalah masalah kesehatan global yang menyebabkan lebih dari tujuh juta kematian setiap tahun. Teknologi canggih, termasuk model deep learning dan algoritma Random Forest, telah digunakan secara efektif untuk mendeteksi dan mengklasifikasikan penyakit paru-paru dari data pencitraan dengan akurasi tinggi. Penelitian ini bertujuan menunjukkan efektivitas algoritma Random Forest dalam memprediksi penyakit paru-paru. Dataset yang digunakan terdiri dari 30.000 data dengan 11 atribut, diperoleh dari Kaggle dan diproses menggunakan perangkat lunak Orange versi 3.36.2. Algoritma Random Forest diimplementasikan dengan 10 pohon keputusan dan enam atribut yang dipertimbangkan pada setiap pembagian data. Model ini diuji menggunakan validasi silang dengan 10 lipatan, dan hasil pengujian menunjukkan nilai AUC sebesar 0,993, yang mengindikasikan tingkat akurasi yang sangat tinggi. Matriks kebingungan digunakan untuk mengevaluasi kinerja model, dengan mengukur akurasi, presisi, recall, F1-Score, dan AUC. Model ini menunjukkan akurasi yang tinggi, dengan nilai ROC AUC 0,453 untuk prediksi adanya penyakit paru-paru dan 0,547 untuk prediksi ketiadaan penyakit paru-paru. Hasil ini menunjukkan bahwa algoritma Random Forest dapat menjadi alat yang efektif dalam mengidentifikasi penyakit paru-paru. Penelitian ini berkontribusi pada pengembangan teknik diagnostik yang lebih akurat dan efisien, yang dapat membantu tenaga medis dalam mendiagnosis penyakit paru-paru pada pasien. Dengan pemahaman yang lebih baik tentang penerapan algoritma ini dalam dunia kesehatan, diharapkan dapat meningkatkan kualitas diagnosis dan perawatan pasien secara signifikan.
Virtual Link Aggregation Network Performance Using MikroTik Bonding Firmansyah, Firmansyah; Wahyudi, Mochamad; Purnama, Rachmat Adi
IAIC Transactions on Sustainable Digital Innovation (ITSDI) Vol 2 No 2 (2021): April
Publisher : Pandawan Sejahtera Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.34306/itsdi.v2i2.394

Abstract

Quality of Service in a network is a big thing that must be resolved and dealt with as best as possible. The limitation of the maximum transfer rate in network devices creates an obstacle in the process of transferring data packets. To maximize the transfer rate in network devices, you can use Virtual Link Aggregation which can offer bandwidth optimization and failover in the network. Link aggregation is a solution in combining several physical links into one logical link. The method used in this research is to consider the allocation of bandwidth, load balancing and failover in the link aggregation. From the results of the link aggregation test using two (2) interface bonding, the results of the bandwidth averages when there is a UPD data packet transfer to 0 bps / 184.9 Mbps, which was previously around 0 bps / 91.6 Mbps. While the result of the bandwidth averages when the TCP data packet transfer occurs is 0 bps / 105.5 Mbps, which was previously around 0 bps / 93.8 Mbps. Link Aggregation using a Mikrotik Router is a solution to produce a larger Throughput Bandwidth by combining two (2) Ethernet Physical Links into one logical link.
Privacy-Preserving machine learning in edge computing environments Kurniawan, Deni; Triyanto, Dedi; Wahyudi, Mochamad; Pujiastuti, Lise
Jurnal Teknik Informatika C.I.T Medicom Vol 15 No 3 (2023): July: Intelligent Decision Support System (IDSS)
Publisher : Institute of Computer Science (IOCS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35335/cit.Vol15.2023.621.pp118-125

Abstract

Edge computing has transformed data processing by moving computation closer to the source, enabling real-time analysis and decision-making. Edge devices are decentralized, which creates privacy and confidentiality concerns, especially when applying machine learning algorithms to sensitive data. Privacy-preserving machine learning methods for edge computing are examined in this research. Federated learning, homomorphic encryption, differential privacy, and secure aggregation are examined as data protection methods for network edge machine learning. A thorough study of these methods shows the challenges of balancing privacy, computational economy, and model correctness. Federated learning has promise for collaborative model training without raw data sharing, but communication overhead and convergence speed remain. A fictional healthcare use case shows how federated learning may be used to train collaborative models across many edge devices while protecting patient data. The case study stresses the necessity for sophisticated optimizations to overcome edge device limits and regulatory compliance. Federated learning algorithms, privacy-preserving procedures, and ethics must be improved, according to the research. Future directions include improving heterogeneous edge algorithms, addressing data ownership and consent ethics, and increasing model decision-making openness. This paper presents essential insights on privacy-preserving machine learning in edge computing and advocates for robust techniques for different edge environments. The paper emphasizes the importance of technological advances, ethical frameworks, and regulatory compliance for secure and privacy-aware machine learning in decentralized edge computing
Explainable artificial intelligence (XAI) for trustworthy decision-making Kurniawan, Deni; Triyanto, Dedi; Wahyudi, Mochamad; Pujiastuti, Lise
Jurnal Teknik Informatika C.I.T Medicom Vol 15 No 5 (2023): November : Intelligent Decision Support System (IDSS)
Publisher : Institute of Computer Science (IOCS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35335/cit.Vol15.2023.622.pp240-246

Abstract

This research delves into the optimization of loan approval decisions by integrating the Trustworthy Decision Making (TDM) framework into a mathematical model. The study aims to strike a balance between maximizing loan approvals and ensuring fairness, transparency, and accountability in AI-driven decision-making processes. Leveraging principles of transparency, fairness, and accountability, the mathematical model seeks to optimize loan approvals while adhering to ethical considerations. The formulation emphasizes the importance of interpretable models to maintain transparency in decision explanations, ensuring alignment with trustworthy AI practices. Implementation results demonstrate the efficacy of the model in achieving a balanced approval rate across demographic groups while providing transparent explanations for decisions. This study highlights the significance of ethical considerations and mathematical formulations in fostering responsible AI implementations. However, continual refinement and adaptation of such models remain essential to align with evolving ethical standards and societal expectations. Overall, this research contributes to the discourse on responsible AI by showcasing a methodological approach that integrates ethical principles and mathematical formulations to promote fairness, transparency, and accountability in AI-driven decision-making.
Co-Authors Abdurrachman, Qais Ade Budiman, Ade Adi Supriyatna Akbar, Habibullah Ali Haidir Alpha Ariani, Alpha Andri Amico Atrinawati, Lovinta Happy Azis, Munawar Abdul Azkia, Farah Diba Barreto Jose da Conceição Budiman, Ade Surya Dedi Triyanto Dedi Triyanto Dedi Triyanto Deni Kurniawan, Deni Dennis Gunawan, Dennis DENY KURNIAWAN Deny Kurniawan Dewi, Revinta Arrova Dimas Trianda Doni Purnama Alam Syah, Doni Purnama Dwi Arum Ningtyas Efendi, Syahril Faiz Djarot, Raihan Jamal Fajar Akbar Firmansyah Firmansyah Firmansyah Firmansyah Firmansyah Firmansyah Firmansyah Firmansyah Firmansyah Freshtiya Beby Larasati Fristi Riandari Fuad Nur Hasan Ganda Wijaya Ganda Wijaya, Ganda Givan, Bryan Hartama, Dedy Hengki Tamando Sihotang Herman Mawengkang Husain Husain Husain Husain Ihsan Daulay Ikhwan, Subaiki Imam Sutoyo Indra Chaidir, Indra Khoirun Nisa KHOIRUN NISA Kotjek, Rafie Laksono, Andriansyah Tri Lestari Yusuf Lise Pujiastuti Lise Pujiastuti Lise Pujiastuti Lise Pujiastuti Lise Pujiastuti Lise Pujiastuti Lise Pujiastuti Lise Pujiastuti Merio Hengki Muhammad Safii Muhammad Zarlis Mukhtar, Mukhneri Noviyanto Nurajijah Nurajijah Nurhasanah Halim Oktaviany, Venny Pricillia Pujiastuti , Lise Pujiastuti, Lise Rachmat Adi Purnama Rahmansyah Siregar, Muhammad Rani, Maulidina Cahaya Retno Dwigustini Reynaldi , Reynaldi Rifani Haikal Riska Aryanti Riski Wulandari Rugaiyah Safii Safii Sfenrianto Sfenrianto Siregar, Muhammad Rahmansyah Solikhun Solikhun Solikhun Solikhun Solikhun Solikhun Solikhun Solikhun Solikhun Solikhun Solikhun Solikhun Solikhun Solikhun Solikhun Solikhun Solikhun, Solikhun Sumanto Sumanto Sumanto, Sumanto Sunu Sugi Arso Susilawati Susilawati Sutarman Sutarman Syarifah Putri Agustini Tantrisna, Ellen Vinsensia, Desi Wijaya, Filzah Yahya Mara Ardi Yosua Chandra Simamora Yudha, Satria Wira Yuni Eka Achyani, Yuni Eka Zidan, Muhammad