This Author published in this journals
All Journal Seminar Nasional Aplikasi Teknologi Informasi (SNATI) TELKOMNIKA (Telecommunication Computing Electronics and Control) Bulletin of Electrical Engineering and Informatics Jurnal Informatika CommIT (Communication & Information Technology) Explore: Jurnal Sistem Informasi dan Telematika (Telekomunikasi, Multimedia dan Informatika) Telematika JUITA : Jurnal Informatika Seminar Nasional Informatika (SEMNASIF) POSITIF Annual Research Seminar Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) International Journal of Artificial Intelligence Research Jurnal Ilmiah Matrik Jusikom : Jurnal Sistem Komputer Musirawas PROCESSOR Jurnal Ilmiah Sistem Informasi, Teknologi Informasi dan Sistem Komputer Jurnal Sisfokom (Sistem Informasi dan Komputer) Jurnal Teknologi Sistem Informasi dan Aplikasi Jurnal Ilmiah Media Sisfo J-SAKTI (Jurnal Sains Komputer dan Informatika) JURIKOM (Jurnal Riset Komputer) Jurnal Informatika Global Journal of Information Systems and Informatics Jurnal Teknologi Dan Sistem Informasi Bisnis Indonesian Journal of Electrical Engineering and Computer Science Jurnal Teknologi Informatika dan Komputer Jurnal Restikom : Riset Teknik Informatika dan Komputer Journal of Computer and Information Systems Ampera Jurnal Pengembangan Sistem Informasi dan Informatika Journal of Applied Computer Science and Technology (JACOST) Jurnal Nasional Pengabdian Masyarakat J-SAKTI (Jurnal Sains Komputer dan Informatika) International Journal Software Engineering and Computer Science (IJSECS) Jurnal Bina Komputer Indonesian Journal of Innovation Multidisipliner Research Ngabdimas Kesatria : Jurnal Penerapan Sistem Informasi (Komputer dan Manajemen) Jurnal Ilmiah Betrik : Besemah Teknologi Informasi dan Komputer
Claim Missing Document
Check
Articles

Analisis Prediksi Jangka Panjang COVID 19 Fase ke 3 di Indonesia menggunakan Deep Learning Herferry, Ibrahim Ade; Ferdiansyah, F; Kunang, Yesi Novaria; Purnamasari, Susan Dian
Kesatria : Jurnal Penerapan Sistem Informasi (Komputer dan Manajemen) Vol 5, No 4 (2024): Edisi Oktober
Publisher : LPPM STIKOM Tunas Bangsa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30645/kesatria.v5i4.474

Abstract

This research is motivated by the ongoing impact of the COVID-19 pandemic, which continues to pose challenges for Indonesia, affecting both the economy and daily life. Therefore, this study will discuss long-term predictions for the third phase of COVID-19 in Indonesia using a Deep Learning model. The analysis aims to assist various stakeholders in developing better planning strategies to address COVID-19 in Indonesia. In conducting this research, the author employs neural networks to create a hybrid model combining GRU and LSTM algorithms. Utilizing RMSE and MAPE values, it can be concluded that the model's performance in predicting COVID-19 cases is influenced by the number of epochs used. Furthermore, the model demonstrates optimal performance at 150 epochs for predicting the number of COVID-19 cases in the next 7 days
Evaluasi dan Peningkatan Keamanan Pada Sistem Informasi Akademik Universitas XYZ Palembang Fajarino, Aldo; Kunang, Yesi Novaria; Yudha, Hendra Marta; Negara, Edi Surya; Damayanti, Nita Rosa
J-SAKTI (Jurnal Sains Komputer dan Informatika) Vol 7, No 2 (2023): EDISI SEPTEMBER
Publisher : STIKOM Tunas Bangsa Pematangsiantar

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30645/j-sakti.v7i2.702

Abstract

As one of the universities in Palembang City, XYZ University has its own web server that functions as an information system in the academic and financial activities of its users. Testing of security systems on information systems needs to be done, web server security is very important to avoid destruction, data theft, data manipulation, and so on. In this study, the OWASP framework and the ISSAF framework were used and then the two methods were compared. The results of this study found several security holes that have been recommended to developers and successfully repaired. There needs to be a comprehensive improvement starting from server configuration, sanitization improvement of character input filters from users, installation of Intrusion Detection System and Intrusion Prevention System.
Pendampingan Pengembangan Aplikasi Statistik Komoditi Berbasis Web pada Dinas Perkebunan Sumatera Selatan Dzakwan, Fadhlur Rahman; Kunang, Yesi Novaria; Yadi, Ilman Zuhri; Afiyudi, Afiyudi
Jurnal Nasional Pengabdian Masyarakat Vol. 6 No. 1 (2025): Jurnal Nasional Pengandian Masyarakat
Publisher : Training & Research Institute - Jeramba Ilmu Sukses

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47747/jnpm.v6i1.2586

Abstract

This article discusses a community service program involving assistance in developing a web-based commodity statistical application at the South Sumatra Plantation Office. This activity aims to enhance data processing efficiency and disseminate information related to plantation commodities. This program involves training staff in the use of information technology and developing applications that meet user needs. The methodologies applied include needs analysis, system design, implementation, and application evaluation. The assistance results indicate a significant improvement in data accuracy and ease of information access, positively impacting policy decision-making in the plantation sector. This activity is expected to contribute to developing similar applications in other government agencies and encourage the use of technology in commodity data management.
Rule-Based Transliteration of Ulu Kaganga Script using Character Mapping Yadi, Ilman Zuhri; Kunang, Yesi Novaria; Sari, Tia Permata; Mahmud, Mahmud; Ramadhona, Nuzulur
Journal of Information System and Informatics Vol 6 No 4 (2024): December
Publisher : Universitas Bina Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.51519/journalisi.v6i4.1000

Abstract

Ulu Kaganga script is a historical writing tradition that developed in the southern region of Sumatra. With the widespread use of Latin script, the Ulu Kaganga script has become rare, and very few people can read and write in this script. To preserve the Ulu script, a tool is needed to assist in transliterating Latin text into the Ulu script. This research aims to preserve the Ulu script with the help of technology. In this study, a mobile and web-based application has been developed to transliterate the Ulu Kaganga script from Latin text. The technique used for this script conversion is rule-based, which is employed to break words into syllables and map those syllables into Ulu script characters. Through the rule-based technique and character mapping, adding Indonesian syllables and writing Ulu Kaganga script characters, consisting of 1139 primary characters, becomes easy. This application has been repeatedly tested to improve the mapping of Ulu script characters. The results of testing the application to transliterate 1746 words from Latin script were successful in transliterating. The tests conducted show that the approach used is very effective, with a transliteration accuracy from Latin to Ulu script of 99.98% The testing results show that the application can transcribe text accurately and conveniently, allowing non-expert users to write in Ulu script characters.
Prapemrosesan untuk Klasifikasi Gambar Aksara OKU Timur Prasetya, M. Iqbal; Yadi, Ilman Zuhri; Kunang, Yesi Novaria; Permatasari, Susan Dian
Jurnal Teknologi Dan Sistem Informasi Bisnis Vol 7 No 1 (2025): Januari 2025
Publisher : Prodi Sistem Informasi Universitas Dharma Andalas

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47233/jteksis.v7i1.1629

Abstract

This study investigates methods to enhance the quality of OKU Timur script images through preprocessing techniques utilizing Adaptive Thresholding. The OKU Timur script, significant for daily communication and traditional ceremonies, encounters challenges such as skew, rotation, and low resolution in image processing. The proposed preprocessing approach includes contrast normalization to improve image clarity, noise reduction to eliminate unwanted artifacts, and feature extraction to emphasize critical image characteristics. These steps are designed to enhance the accuracy of character recognition. The findings indicate that proper preprocessing is crucial for effective recognition of OKU Timur script and holds substantial potential for preserving this cultural heritage through modern technological applications.
ANALISIS MANAJEMEN RESIKO TEKNOLOGI INFORMASI INSTITUSI KESEHATAN (Studi Kasus Rumah Sakit Muhamadiyah Palembang) Egy Septian; Yesi Novaria Kunang
Jurnal RESTIKOM : Riset Teknik Informatika dan Komputer Vol 6 No 1 (2024): April
Publisher : Program Studi Teknik Informatika Universitas Nusa Putra

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52005/restikom.v6i1.293

Abstract

Rumah Sakit merupakan sebuah instansi kesehatan yang merupakan pusat pelayanan kesehatan di mana orang sakit dapat ditampung dan diobati dengan baik. Rumah Sakit Muhamdiyah Palembang merupakan bagian dari jaringan pelayanan kesehatan AHSA, dimana pada tahun 1986 telah menggunakan aplikasi CLIPPER untuk penyimpanan data. Penelitian ini bertujuan untuk melakukan manajemen risiko Sistem Informasi Manajemen Rumah Sakit (SIMRS) pada Rumah Sakit Muhamdiyah Palembang. Dengan melakukan wawancara serta membagikan Kuesioner kepada bagian Mirsa sebagai pengelola IT pada Rumah Sakit. Dalam melakukan manajemen risiko, ISO 31000 diterapkan dan disesuaikan untuk semua jenis organisasi dengan memberikan struktur dan pedoman yang berlaku generik terhadap semua operasi yang terkait dengan manajemen risiko. Hasil dari penelitian ini menunjukkan bahwa terdapat 2 risk level tingkatan high, merupakan risiko berbahaya yang harus diatasi secepatnya, dan 13 risk level tingkatan medium yang merupakan risiko yang harus diperhatikan terus-menerus, sehingga setiap risiko harus dilakukan perlakuan risiko yang diharapkan dapat menjadi acuan dalam penanganan dan pemeliharaan terhadap Sistem Informasi di waktu yang akan datang.
REST API BACKEND APLIKASI E-COMMERCE SECONDHAND MENGGUNAKAN FRAMEWORK SPRING BOOT Prilsafira, Tania; Kunang, Yesi Novaria; Putra, Muhammad Hatta
POSITIF : Jurnal Sistem dan Teknologi Informasi Vol 8 No 2 (2022): Positif : Jurnal Sistem dan Teknologi Informasi
Publisher : P3M Politeknik Negeri Banjarmasin

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31961/positif.v8i2.1475

Abstract

The advancement in information technology is currently rapidly. Information technology can make it easier for humans to work or interact with other people. Technology applications have many various uses. One of the uses is that it can be a means of buying and selling goods or what we often call e-commerce. The SECONDHAND application developed in this study focuses on API Backend selling used goods using the Spring Boot framework. The method used is the SCRUM method which is a type of System Development Life Cycle (SDLC) design method. This research produces a REST API-based backend system.
Besemah Language Translation Machine Model Based on Machine Learning with Recurrent Neural Network (RNN) Model Algorithm Andika, Muhamad; Kunang, Yesi Novaria; Yadi, Ilman Zuhri; Purnamasari, Susan Dian
Jurnal Teknologi Informatika dan Komputer Vol. 11 No. 1 (2025): Jurnal Teknologi Informatika dan Komputer
Publisher : Universitas Mohammad Husni Thamrin

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37012/jtik.v11i1.2614

Abstract

Indonesia consists of various tribes with their respective regional languages, one of which is the Besemah tribe in South Sumatra Province with its language culture, namely the Besemah Language. Until now, the Besemah Language is still used by the Besemah tribe, but over time the number of Besemah Language speakers has decreased, plus most of the wider community does not know what the Besemah Language is. Machine Learning is a part of artificial intelligence that is often used to solve various problems. Machine Learning involves the use of computers and mathematical algorithms that use data to make predictions in the future. Machine translation is a tool that can convert one language to another. This study aims to collect datasets in the form of sentences and words from the Besemah Language, then create a Besemah Language translation machine to Indonesian and vice versa. In the research conducted, the approach used is Experimental Research in Machine Learning. Experimental research in machine learning for language translation is a research approach that involves designing and implementing a series of experiments to test and validate the performance of the language translation model. In this study, Neural Machine Translation (NMT) technology was applied with the Recurrent Neural Network (RNN) approach. The results of the study showed that the val_accuracy value for the Besemah-Indonesian translation was 0.8469 and for Indonesia-Besemah was 0.8492, in the translation trial conducted using the RNN model, 100 epochs, batch size 64, and validation split of 0.2.
The Memory Efficiency in a Receptionist Robot's Face Recognition System Using LBPH Algorithm Yudi, Endang Darmawan; Yesi Novaria Kunang; Zarkasi, Ahmad
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol 8 No 6 (2024): December 2024
Publisher : Ikatan Ahli Informatika Indonesia (IAII)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29207/resti.v8i6.6048

Abstract

This research aims to develop a memory-efficient face recognition system for a receptionist robot using the Local Binary Patterns Histogram (LBPH) algorithm. Given the computational limitations of the Raspberry Pi, the system utilizes optimization techniques including grayscale conversion, noise reduction, and contrast adjustment to enhance processing efficiency. Testing demonstrates that the face recognition accuracy achieves 80.5% to 85.5% in offline mode, and 72% to 81% in real-time mode, with variations due to lighting conditions and facial expressions. The robot's servo motors exhibit a response time between 1.945 and 3.561 seconds, enabling responsive and interactive user engagement. The results suggest practical benefits for deploying face recognition in resource-constrained environments, enhancing the efficiency of robotic receptionist applications.
Clustering OKU Timur Script Images using VGG Feature extraction and K-Means Toriko, Liu; Purnamasari, Susan Dian; Kunang, Yesi Novaria; Yadi, Ilman Zuhri; Andri, Andri
Jurnal Sisfokom (Sistem Informasi dan Komputer) Vol. 14 No. 1 (2025): JANUARY
Publisher : ISB Atma Luhur

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32736/sisfokom.v14i1.2292

Abstract

This study focuses on the utilization of clustering models to group manuscript images from the OKU Timur region based on specific characteristics. OKU Timur is rich in cultural heritage, including a unique writing system known as the OKU Timur script. The development of intelligent systems technology can be employed to recognize the OKU Timur script. For this purpose, a dataset of OKU Timur script is needed, which will later be used for classifying script images. One of the challenges in preparing the dataset is grouping a large number of script image samples according to the number of characters. A proposed solution in this research is to automatically group script images by applying the K-Means algorithm. The dataset comprises 2,280 images, representing 19 characters and 228 variations with different diacritics. Features are extracted using the VGG16 model, which are then clustered with the K-Means algorithm. Clustering performance is evaluated based on the percentage of correctly grouped characters. For 19 groups (character count), the model achieves an accuracy of 82.6%. For 228 groups (variations and diacritics), it correctly groups 48.16% of characters. Despite the challenges, the results demonstrate the model’s potential for further refinement. This study’s contribution lies in introducing an efficient clustering approach for cultural manuscripts, supporting digital preservation, and advancing automatic recognition of the OKU Timur script. These efforts aim to preserve the script for future generations.
Co-Authors Adam Prasetya Afiyudi, Afiyudi Afriyudi Agus Setiawan Agus Setiawan Ahmad Zarkasi Andika, Muhamad Andri Andri Anggie Khristian Ariandi, Muhamad Arief Algiffary Armansyah, Risky Atmojo, Toni Tri Ayu Okta Pratiwi Beni Brahara Bhakti Yudho Suprapto Damayanti, Nita Rosa Darmawahyuni, Annisa Dedy Syamsuar Dedy Syamsuar Deris Stiawan Dinata, Aria Dzakwan, Fadhlur Rahman Edi Surya Negara Egy Septian Eka Puji Agustini Endang Etriyanti Fajarino, Aldo Ferdiansyah Ferdiansyah Fernandy Jupiter Fikri, M Finaldo, Muhammad Firdaus Firdaus Firdaus Fitri maria Gllen yusuf abbel Hamanrora, Muhammad Dio Hellen Puspita Sari Hendra Marta Yudha Herdiansyah, Izman Herdiansyah, M. Izman Herferry, Ibrahim Ade Ilman Zuhri Yadi Ilman Zuhri Yadi Ilman Zuhriyadi Inda Anggraini Irwansyah Ibrahim Kurniawan Kurniawan Lang Dimas Perkasa Leon Andretti Abdillah Liza Fahreni M Izman Herdiansyah M. Izman Herdiansyah Mahmud Mahmud Mahmud Mahmud Muhammad Fachrurrozi Muhammad Hafiz Ziqrullah Muhammad Izman Herdiansyah Muhammad Naufal Rachmatullah Netti Herawati Novi Yusliani Novifika, Seva Permatasari, Susan Dian Prasetya, M. Iqbal Prilsafira, Tania Putra, Muhammad Hatta Ramadhona, Nuzulur Rianda, M. Rianda Rio Ananda Fitriansyah Sari, Tia Permata Siti Nurmaini Sri Murniati Suryayusra - Susan Dian Purnamasari, Susan Dian Taqrim Ibadi Tata Sutabri Tia Permata Sari Toriko, Liu Tri Basuki Kurniawan Tri Basuki Kurniawan Usman Ependi Via Sukma Cendanie Widya Cholil Widya Putri Mentari Winoto Chandra Wulandari, Intan Fitriana Yayuk Ike Meilani Yudi, Endang Darmawan Yustida Bellini Zulkifli Harahap Zulkifli Harahap