Claim Missing Document
Check
Articles

Found 30 Documents
Search

APLIKASI SISTEM MONITORING GAS NO2 DAN CO BERBASIS IOT Muhammad Nur Fauzi; Bagus Fatkhurrozi; Deria Pravitasari
JURNAL ELEKTROSISTA Vol. 10 No. 2 (2023): JUNI 2023
Publisher : PPM Sdirjianbang Akademi Militer

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (451.476 KB) | DOI: 10.63824/jtep.v10i2.89

Abstract

Clean air quality plays an important role in maintaining the health of living things and climate change. Significant exposure to dirty air results in premature aging, lung cancer, especially exposure to carbon monoxide (CO) and nitrogen dioxide (NO2) gases. Increasing air pollution requires solutions to reduce the impact of air pollution. The first solution is air quality monitoring. The thingspeak platform air quality monitoring has channel ID restrictions. Based on these problems, this research focuses on updating using an open source platform that does not have channel ID restrictions. In this study, an IoT-based NO2 and CO Gas Monitoring Application was designed. QOS test results obtained packet loss reached a distance of 120m and throughput obtained in the bad category at LOS. The distance of the transmitter and receiver affects throughput and packet loss. The results of the application have no channel restrictions, gas notifications are detected and dangerous gas works, and the color of the circular progress bar can indicate the gas category.
SISTEM PEMBERIAN PAKAN, MONITORING AERATOR, DAN SUHU PADA KOLAM IKAN BIOFLOK Basofi Luqman; Ibrahim Nawawi; Bagus Fatkhurrozi
JURNAL ELEKTROSISTA Vol. 11 No. 1 (2023): DESEMBER 2023
Publisher : PPM Sdirjianbang Akademi Militer

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.63824/jtep.v11i1.143

Abstract

Budidaya ikan bioflok merupakan metode yang inovatif dalam pemeliharaan ikan, tetapi menghadapi tantangan dalam menjaga kadar oksigen terlarut dalam air agar tetap cukup. Untuk mengatasi masalah ini, kami mengembangkan sebuah sistem monitor dan kendali yang efektif untuk aerator, suhu kolam, dan pemberian pakan otomatis. Sistem memungkinkan pengawasan dan pengendalian melalui koneksi internet pada perangkat Android dan mikrokontroler tanpa gangguan yang signifikan. Rata-rata delay dalam respon balasan sistem kurang dari 8 detik. Sensor ACS712 digunakan untuk mendeteksi arus listrik aerator dalam rentang 0.00 hingga 5 ampere, memberikan notifikasi jika arus listrik di bawah 0.5 atau melebihi satu. Sensor DS18b20 digunakan untuk memonitor suhu kolam dalam rentang suhu optimal bagi ikan (25°C hingga 31°C) dan memberikan notifikasi jika suhu di luar batas tersebut. Sistem juga memungkinkan pengaturan jadwal pemberian pakan dengan modul RTC DS3231, dan jumlah pemberian pakan dapat disesuaikan dengan berbagai kebutuhan kolam yang berbeda.
Penerapan Faster RCNN + ResNet 50 untuk Mengidentifikasi Spesies dan Stadium Parasit Plasmodium Malaria Prananda, Alifia Revan; Novichasari, Suamanda Ika; Fatkhurrozi, Bagus; Abdillah, Muhammad Nurkholis; Frannita, Eka Legya; Majidah, Zharifa Nur; Wibowo, Fadhila Syahida
TIN: Terapan Informatika Nusantara Vol 6 No 2 (2025): July 2025
Publisher : Forum Kerjasama Pendidikan Tinggi (FKPT)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/tin.v6i2.7187

Abstract

Malaria is one of the epidemic health diseases and is well-known as a serious infectious disease. The malaria examination process had occurred by analyzing the digital microscopic images using a microscope. Those examination procedures were conducted manually, which lead to some hurdles such as misinterpretation, misdiagnosis and may produce subjective results. This research aims to develop a method for detecting the Plasmodium parasite and identifying the species and stage of Plasmodium parasite. The proposed method was performed into 488 raw data comprising of 538 parasites. The proposed method was started by conducting a data augmentation process for balancing the number of data, training model, testing model, evaluation. In this study, both the training and testing processes were performed by applying Faster RCNN + ResNet-50. The result of the testing process shows that Faster RCNN + ResNet-50 successfully achieved mAP of 0,603. It also achieved accuracy of 93.91%, sensitivity of 66.20%, specificity of 96.10%, PPV of 60.14% and NPV of 97.30%. This result indicates that the proposed method is powerful for detecting Plasmodium parasites and identifying all species and stadiums.
Implementasi Logika Fuzzy pada Sistem Kendali Suhu Dan Kelembaban Udara Ruangan Pengering Biji Kopi Berbasis Mikrokontroller Fatkhurrozi, Bagus; Setiawan, Hery Teguh
Journal of Telecommunication Electronics and Control Engineering (JTECE) Vol 6 No 1 (2024): Journal of Telecommunication, Electronics, and Control Engineering (JTECE)
Publisher : LPPM INSTITUT TEKNOLOGI TELKOM PURWOKERTO

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20895/jtece.v6i1.1319

Abstract

Kopi merupakan salah satu minuman yang digemari karena rasanya yang unik. Salah satu proses penanganan yang paling penting dalam pengolahan biji kopi adalah pada proses pengeringan biji kopi. Proses pengeringan biji kopi yang baik memerlukan ruang pengering yang dapat distabilkan pada suhu dan kelembaban yang stabil. Pengaturan suhu ruangan dapat dilakukan secara manual maupun dengan menggunakan mikrokontroler. Penerapan logika fuzzy dapat menghasilkan pengaturan suhu dan kelembaban yang lebih stabil, pada penelitian ini dikembangkan sistem pengendalian suhu dan kelembaban ruangan dengan logika fuzzy berbasis mikrokontroler. Hasil penelitian menunjukkan bahwa sistem kendali logika fuzzy berbasis mikrokontroler dapat mengontrol suhu dan kelembaban ruang pengering kopi, dan telah berhasil diimplementasikan ke dalam mikrokontroler dengan hasil pengujian simulasi menggunakan MATLAB. Hasil pada mikrokontroler mempunyai rata-rata deviasi keluaran sebesar 0,03500 dan rata-rata deviasi keluaran pengaturan kipas sebesar 0,01225.
Peramalan Beban Listrik Kabupaten Cilacap Aruna, Evan Dhia; Fatkhurrozi, Bagus; Kurniawan, Andriyatna Agung
ULIL ALBAB : Jurnal Ilmiah Multidisiplin Vol. 3 No. 2: Januari 2024
Publisher : CV. Ulil Albab Corp

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.56799/jim.v3i2.2813

Abstract

This study examines electricity load, emphasizing the need for accurate prediction and optimal distribution. Utilizing artificial neural networks and the backpropagation algorithm, the research leverages data from BPS Kabupaten Cilacap and PT. PLN (Persero) UP3 Kabupaten Cilacap. Various configurations for hidden layer neurons, epochs, and learning rates are explored to determine the optimal network architecture for forecasting. The selected model, with specific criteria, demonstrates high accuracy during training (MSE: 0.00099999, MAPE: 5.44%, Regression: 0.98226) and testing (MSE: 0.0009493, MAPE: 3.99%, Regression: 0.90709) phases. The conclusion affirms the effectiveness of the Backpropagation ANN method in predicting electricity load in Kabupaten Cilacap for the period 2023-2030, meeting PLN's tolerance of ≤ 10% based on the MAPE criteria.
Sistem Monitoring Jarak Jauh Pada Peternakan Kandang Ayam Petelur Terintegrasi Telegram Wicaksono, Mahasadaru; Fatkhurrozi, Bagus; Setiawan, Hery Teguh
ULIL ALBAB : Jurnal Ilmiah Multidisiplin Vol. 3 No. 2: Januari 2024
Publisher : CV. Ulil Albab Corp

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.56799/jim.v3i2.2859

Abstract

If the ammonia gas level exceeds the threshold of 25 PPM, it affects the mucous membranes of the eyes, respiratory tract, propagation of disease agents, immune system, and the reproductive system of livestock. The solution involves monitoring the level of ammonia gas on layer chicken farms to minimize air pollution, ensuring the undisturbed growth of layer chickens. This research employs IoT to monitor the level of ammonia gas on layer chicken farms without distance limitations. The MQ-137 ammonia sensor can read values ranging from 8-50 PPM. The largest error value is 10%, with an average error of 4%. The system is considered successful when the sensor consistently provides accurate readings. When applied to chicken farm enclosures, the highest ammonia value obtained is 5.95 PPM. Notifications work effectively in case of ammonia levels exceeding or falling below the threshold, and during rainy or dry conditions. The system sends notifications three times with a one-minute delay. Upon receiving notifications, a button appears to request turning on or off the fan. The device can send notifications and control the fan regardless of distance, as long as the device and Telegram are connected to the internet.
Perencanaan Sistem Fire Alarm Semi-Addressable dan Sprinkler pada Bangunan Gedung Fakultas Teknik 3 Universitas Tidar Vincent Cleo D.A. P; Bagus Fatkhurrozi; Sapto Nisworo
ULIL ALBAB : Jurnal Ilmiah Multidisiplin Vol. 3 No. 2: Januari 2024
Publisher : CV. Ulil Albab Corp

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.56799/jim.v3i2.2869

Abstract

The impact of fire, from property damage to life threats, is devastating. The fire department is generally notified immediately, but delays often occur due to distance. Engineering Faculty Building 3 is not yet equipped with an automatic extinguishing system. An automatic warning and shutdown system is required. Planning completes the FT3 fire protection system, analyzing building characteristics and identifying potential hazards. Analysis according to NFPA standards ensures reliability and safety. The results show FT3 has a Low Fire Hazard Potential, with the danger concentrated in areas of combustible materials that produce little heat, and the fire spreads slowly. System calculation: 67 smoke detectors, 222 sprinklers, water volume 416.35 m3, water tank 500 m3. Pump power includes HHP 35.2 kW, BHP 46.9 kW, P 60 kW, and PpD 27 HP. The budget for developing an automated system at FT3 is around IDR 1,232,640,194.
COMPARATIVE STUDY OF DISTRIBUTED DENIAL OF SERVICE (DDOS) ATTACK DETECTION IN COMPUTER NETWORKS Adam Zukhruf; Bagus Fatkhurrozi; Andriyatna Agung Kurniawan
Jurnal Teknik Informatika (Jutif) Vol. 4 No. 5 (2023): JUTIF Volume 4, Number 5, October 2023
Publisher : Informatika, Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52436/1.jutif.2023.4.5.756

Abstract

Distributed Denial of Service (DDoS) attack is an internet crime that aims to consume server resources so that the server becomes unusable. Suricata, Snort and Wireshark are useful software applications for detecting DDoS attacks. This study aims to compare the performance of the snort, suricata and wireshark applications in detecting Distributed Denial of Service attacks. The comparison parameters used are the total attacks that can be detected and memory usage. The type of attack used in testing is syn flood and ping of death. The research results obtained by Suricata became the most effective application in this study compared to snort and wireshark. Suricata excels in memory usage in the two types of attacks performed with the percentage of memory usage being 0.1891 GB (4.975%) during syn flood attacks and 0.00114 GB (0.03%) during ping of death attacks. Suricata also excels in the percentage of the total number of detected ping of death attacks, namely 86,472%.
Design and Build Mppt Solar Charge Controller Using Buck Converter On Photovoltaic Based Microcontroller Pic Widodo, Teguh Rahayu; Fatkhurrozi, Bagus; Setiawan, Hery Teguh
PROtek : Jurnal Ilmiah Teknik Elektro Vol 11, No 3 (2024): Protek: Jurnal Ilmiah Teknik Elektro
Publisher : Program Studi Teknik Elektro Universitas Khairun

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33387/protk.v11i3.5817

Abstract

Photovoltaic (PV) is a component for converting solar energy into electrical energy. On the other hand, the characteristics of PV performance are fluctuating, additional circuits are needed to maximize PV performance. This research discusses the maximum power point tracker (MPPT) in a solar charge controller system using PIC microcontroller as a solution to maximize PV performance. The MPPT algorithm used is perturb and observe (PO) with PV power parameters because this algorithm is often used and has good efficiency. This research system was tested using a voltage scale of 15 V, 16V, 17 V, 18.1 V, 19 V, 20 V, 21 V, 22 V, 23.1 V, 24.1 V, and 25 V with the lowest average error value of 3.01447379% and highest 4.312288%. Testing the working characteristics of the 120WP solar panel shows that the solar panel will work optimally when the conditions are sunny and the temperature is not high. The results of testing solar panels with the highest average output voltage of 22.1 V. From testing the system on solar panels shows the value of the ADC output voltage with an average of 12.603V in sunny conditions, 12.372V in sunny cloudy conditions, 12.23V in cloudy conditions, 12.5 V in an obstructed condition. In testing system efficiency using the PO algorithm with an average result of 80.4818%.
Deteksi Penyakit Daun Durian dengan Algoritma YOLO (You Only Look Once) Mauladany, Muhammad Ibna; Fatkhurrozi, Bagus; Wibowo, Rheza Ari
Aviation Electronics, Information Technology, Telecommunications, Electricals, and Controls (AVITEC) Vol 6, No 1 (2024): February
Publisher : Institut Teknologi Dirgantara Adisutjipto

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28989/avitec.v6i1.2067

Abstract

Permasalahan yang dialami petani durian salah satunya adalah serangan penyakit terhadap daun sehingga mengganggu proses produksi buah. Penyakit yang sering menyerang daun durian adalah bercak daun dan hawar daun. Penelitian ini memiliki tujuan untuk menerapkan teknologi kecerdasan buatan yang dapat membantu mengenali, mengamati serta mendeteksi penyakit daun durian secara efektif. Algoritma deteksi objek menggunakan YOLO (You Only Look Once) merupakan bagian dari sistem kecerdasan buatan digunakan dalam penelitian ini. Objek yang dideteksi dalam penelitian ini dibagi menjadi 3 kelas yaitu bercak daun, hawar daun, dan daun sehat. Proses penyusunan sistem memanfaatkan citra daun yang memiliki kelas tersebut dengan jumlah 300 gambar dan 25 gambar sebagai citra uji. Dari hasil training dataset menggunakan Google Colab, nilai mAP tertinggi didapat pada epoch 100 yaitu sebesar 0,815. Model kemudian diuji dan mendapatkan nilai akurasi 85 %, kepresisian 96 %, dan recall 86%.