Claim Missing Document
Check
Articles

Implementasi Metode Haralick dengan Random Forest Classifier untuk identifikasi Penyakit Kentang Pada Citra Daun Muhammad Syahriani Noor Basya Basya; Andi Farmadi; Dwi Kartini; Radityo Adi Nugroho; Rudy Herteno
Journal of Data Science and Software Engineering Vol 3 No 03 (2022)
Publisher : Fakultas MIPA Universitas Lambung Mangkurat

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Potato plants are one of the most widely grown food crops in the highlands of Indonesia. Besides being used as food, potatoes are now known to be used to fight free radicals, control blood sugar, and nourish the digestive system. Therefore, potatoes have good prospects for development. In connection with efforts to develop potatoes in Indonesia, there are obstacles, namely the attack of potato plants by disease. As for the disease in potato plants, one of the characteristics of knowing it is on the leaves. To identify the leaf image, the texture feature is an important feature to recognize the leaf from an image. This is because there are differences in texture between normal and diseased leaves. To perform image processing through texture features, one method that can be used is haralick. In this study, a system was created to identify the types of diseases present in potato leaves using the Haralick method with the Random Forest Classifier. The image used is 300 data consisting of 3 classes, namely Late Blight, Early Blight, and Health. In this study, the testing was carried out by dividing the training and testing data with a percentage of 70:30, 80:20, and 90:10. The highest accuracy value in this study was obtained by using a combination of 80:20 split data, which was 0.88. The 70:30 data split gets an accuracy of 0.85 and the 90:10 data split gets an accuracy of 0.87.
OPTIMASI ALGORITMA K-NEAREST NEIGHBOR DENGAN SELEKSI FITUR MENGGUNAKAN XGBOOST Muflih Ihza Rifatama; Mohammad Reza Faisal; Rudy Herteno; Irwan Budiman; Muhammad Itqan Mazdadi
Jurnal Informatika dan Rekayasa Elektronik Vol. 6 No. 1 (2023): JIRE April 2023
Publisher : LPPM STMIK Lombok

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36595/jire.v6i1.723

Abstract

Kankergmerupakan istilah umum untuk sekelompokgbesar penyakit yang dapatgmenyerang bagian tubuhgmanagpun. Salah satu kanker yang berbahaya adalah Kankerspayudara. Pencegahanskanker payudarasdapatsdilakukansdengan salah satu cara yaitu skrining atau diagnosa dini. Pendiagnosaan dapat menggunakan Machine learning dengan beberapa algoritma contohnya K-Nearest Neighbor. Algortima klasifikasi K-Nearest Neighbor (K-NN) merupakan algortima yang cukup terkenal dan sering digunakan, tetapi terdapat kelemahan pada algoritma KNN yaitu algoritma ini sangat berpengaruh dengan adanya data yang noise atau tidak relevan jika skala fitur tidak konsisten dengan kepentingannya. Salah satu cara mengatasinya adalah dengan cara menyeleksi fitur. Seleksi fitur yang digunakan yaitu menggunakan Extreme Gradient Boosting (XGBoost) berdasarkan kepentingan fitur yang didapatkan. Hasilnya menunjukkan bahwa KNN dengan seleksi fitur XGBoost menggungguli model KNN tanpa seleksi fitur, untuk nilai KNN dengan seleksi fitur XGBoost mendapatkan akurasi sebesar 0,977 sedangkan KNN tanpa seleksi fitur mendapatkan akurasi sebesar 0,974.
Application of Extreme Learning Machine Method With Particle Swarm Optimization to Classify of Heart Disease Adela Putri Ariyanti; Muhammad Itqan Mazdadi; Andi - Farmadi; Muliadi Muliadi; Rudy Herteno
IJCCS (Indonesian Journal of Computing and Cybernetics Systems) Vol 17, No 3 (2023): July
Publisher : IndoCEISS in colaboration with Universitas Gadjah Mada, Indonesia.

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijccs.86291

Abstract

Penyakit jantung koroner adalah tersumbatnya suplai darah jantung. Penyakit jantung adalah penyebab utama kematian di seluruh dunia. Berbagai faktor risiko berkontribusi terhadap penyakit jantung, termasuk merokok, gaya hidup tidak sehat, kolesterol tinggi, dan hipertensi. Dengan demikian, prediksi penyakit dapat dilakukan untuk mengidentifikasi individu yang berisiko guna mencegah peningkatan kematian akibat penyakit jantung. Penambangan data, khususnya metode Extreme Machine Learning (ELM), biasanya digunakan untuk tujuan ini. ELM adalah metode jaringan saraf dalam kecepatan pelatihan dan tidak memerlukan propagasi balik, dan menentukan jumlah node tersembunyi yang optimal dan mencapai hasil yang akurat tetap menjadi tantangan. Pada penelitian ini, ELM dengan Particle Swarm Optimization (PSO) diusulkan untuk mengoptimalkan klasifikasi penyakit jantung, yang bertujuan untuk mencapai hasil optimal dengan pembelajaran cepat. Penelitian ini mengikuti proses yang sistematis, termasuk pengumpulan data, preprocessing, pemodelan, dan evaluasi menggunakan analisis matriks konfusi. Hasil dan pembahasan menyajikan efektivitas metode yang diusulkan dengan mengevaluasi akurasi klasifikasi berdasarkan berbagai parameter, seperti ukuran populasi, jumlah node tersembunyi, dan iterasi. Temuan menunjukkan bahwa ELM dengan optimasi PSO dapat memberikan hasil klasifikasi yang akurat untuk diagnosis penyakit jantung, dengan tingkat akurasi yang menjanjikan.
Klasifikasi Harapan Hidup Pasien Karsinoma Hepatoseluler Menggunakan Extreme Learning Machine Dengan Perbaikan Data Hilang Suci Permata Sari; Triando Hamonangan Saragih; Andi Farmadi; Radityo Adi Nugroho; Rudy Herteno
Jurnal Informatika Polinema Vol. 9 No. 4 (2023): Vol. 9 No. 4 (2023)
Publisher : UPT P2M State Polytechnic of Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33795/jip.v9i4.1287

Abstract

International Agency for Research on Cancer (IARC) mengestimasi bahwa pada tahun 2020 kanker hati primer berada di peringkat ke-6 sebagai kanker yang paling banyak didiagnosis dan peringkat ke-3 sebagai penyebab utama kematian akibat kanker di dunia. Mayoritas kanker hati primer muncul dari sel-sel hati dan disebut Karsinoma Hepatoseluler (KHS). Salah satu upaya yang dapat dilakukan untuk mengatasi permasalahan tersebut adalah dengan mengklasifikasikan harapan hidup pasien KHS. Terdapat banyak metode yang dapat digunakan dalam klasifikasi, salah satunya adalah menggunakan Extreme Learning Machine (ELM). Dataset yang digunakan pada penelitian ini adalah HCC Survival Data Set yang memiliki 49 fitur dengan rata-rata data hilang sebesar 10,22% secara keseluruhannya. ELM merupakan metode yang mengharuskan semua data pada datasetnya lengkap tanpa memiliki data hilang. Sehingga harus dilakukan penanganan data hilang terlebih dahulu sebelum dilakukan klasifikasi. Penanganan data hilang pada penelitian ini dilakukan dengan menggunakan teknik imputasi. Pada penelitian ini dilakukan perbandingan antara hasil klasifikasi dari data yang diimputasi menggunakan MissForest dengan hasil klasifkasi dari data yang diimputasi menggunakan K-Nearest Neighbors Imputation (KNNI). Perbandingan tersebut dilakukan untuk mengetahui metode imputasi mana yang menghasilkan data imputasi dengan kinerja terbaik pada klasifikasi kelangsungan hidup pasien KHS. Hasil menunjukkan bahwa data yang diimputasi menggunakan KNNI menghasilkan nilai akurasi rata-rata dan nilai rata-rata AUC yang lebih unggul dibandingkan dengan data yang diimputasi dengan MissForest, yaitu dengan nilai akurasi rata-rata sebesar 92,941% dan rata-rata AUC sebesar 0,9758.
Penerapan SMOTE-NCL untuk Mengatasi Ketidakseimbangan Kelas pada Klasifikasi Penyakit Jantung Koroner Mariana Dewi; Triando Hamonangan Saragih; Rudy Herteno
Jurnal Informatika Polinema Vol. 10 No. 1 (2023): Vol 10 No 1 (2023)
Publisher : UPT P2M State Polytechnic of Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33795/jip.v10i1.1394

Abstract

Penyakit jantung koroner (PJK) terjadi akibat penyumbatan atau penyempitan pada pembuluh darah jantung karena adanya endapan lemak dan kolesterol sehingga mengakibatkan suplai darah ke jantung menjadi terganggu. PJK masih merupakan masalah kesehatan yang penting dan berdampak secara sosioekonomi karena biaya obat-obatan yang cukup mahal dan lamanya waktu perawatan serta pengobatannya. Upaya pencegahan melalui deteksi dini dan upaya pengendaliannya sangat penting untuk dilakukan. Salah satu cara untuk mendeteksi penyakit jantung koroner dengan memanfaatkan teknologi komputasi, yaitu melakukan klasifikasi menggunakan algoritma tertentu. Pada penelitian ini dilakukan klasifikasi dengan menggunakan algoritma Support Vector Machine (SVM) serta penanganan ketidakseimbangan data menggunakan SMOTE dan SMOTE-NCL. Data yang digunakan dalam penelitian ini adalah data Coronary Heart Disease yang memiliki dua buah kelas, yaitu kelas 0 (negatif PJK) dan kelas 1 (positif PJK) dengan permasalahan data yang tidak seimbang. Penelitian ini dilakukan dengan membandingkan kinerja dari klasifikasi SVM tanpa dilakukan penyeimbangan data, klasifikasi SVM dengan penyeimbangan data SMOTE, dan kalsifikasi SVM dengan penyeimbangan data SMOTE-NCL. Hasil yang didapatkan dari penelitian ini adalah pada klasifikasi SVM dengan penyeimbangan data SMOTE-NCL menghasilkan kinerja terbaik jika dibandingkan dengan model klasifikasi lain dengan nilai akurasi sebesar 85,10%.
Pengelompokan PMKS menggunakan Self Organizing Maps dengan perbaikan missing value Naïve Bayes Imputation Hidayah, Noor; -, Muliadi; Budiman, Irwan; Nugrahadi, Dodon Turianto; Herteno, Rudy
Jurnal Teknologi dan Sistem Komputer [IN PRESS] Volume 10, Issue 4, Year 2022 (October 2022)
Publisher : Department of Computer Engineering, Engineering Faculty, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/jtsiskom.2022.14424

Abstract

Penyandang Masalah Kesejahteraan Sosial (PMKS) merupakan permasalahan pada kelompok masyarakat yang memiliki kesulitan dalam menjalankan fungsi sosial. Penelitian dilakukan untuk mengetahui karakteristik permasalahan di wilayah Kalimantan Selatan dengan menggunakan klasterisasi. Metode klasterisasi yang digunakan adalah SOM dan pengisian data kosong menggunakan NBI yang dibandingkan dengan Metode Statistik (Mean, Median, dan Modus). Proses dimulai dari mengisian data kosong dengan NBI dan Metode Statistik, dilanjutkan dengan klaster SOM dan hasil klaster dievaluasi menggunakan DBI. Hasil yang didapatkan adalah perbaikan NBI menempati hasil klasterisasi terbaik dengan nilai 0,032 pada pembagian 2 klaster. Klaster pertama berjumlah 8 wilayah yaitu Tanah Laut, Kota Baru, Tapin, Hulu Sungai Selatan, Hulu Sungai Tengah, Hulu Sungai Utara, Tabalong, dan Tanah Bumbu. Klaster kedua berjumlah 5 wilayah yaitu Banjar, Barito Kuala, Balangan, Banjarmasin, dan Banjarbaru. Tingkat prioritas yang diperoleh dari rata-rata klaster didapatkan bahwa klaster kedua sebagai prioritas pertama.
PENINGKATAN KINERJA PREDIKSI CACAT SOFTWARE DENGAN HYPERPARAMETER TUNING PADA ALGORITMA KLASIFIKASI DEEP FOREST Emma Andini; Faisal, Mohammad Reza; Rudy Herteno; Nugroho, Radityo Adi; Friska Abadi; Muliadi
Jurnal Mnemonic Vol 5 No 2 (2022): Mnemonic Vol. 5 No. 2
Publisher : Teknik Informatika, Institut Teknologi Nasional malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36040/mnemonic.v5i2.4793

Abstract

Prediksi cacat software adalah salah satu studi pada bidang Rekayasa Perangkat Lunak yang telah diteliti oleh banyak peneliti. Tujuan dari studi ini adalah untuk mencari tahu algoritma yang dapat memberikan kinerja prediksi cacat software yang lebih baik. Salah satu penelitian yang telah dilakukan adalah melakukan prediksi cacat software dengan menggunakan algoritma berbasis pohon seperti Decision Tree, Random Forest dan Deep Forest. Deep Forest adalah algoritma klasifikasi berbasis pohon yang baru yang merupakan perbaikan dari algoritma Random Forest. Namun implementasi Deep Forest dalam penelitian terdahulu masih belum memberikan kinerja yang maksimal. Hasil pada penelitian terdahulu menunjukan bahwa kinerja algoritma Deep Forest masih ada yang lebih rendah dibandingkan algoritma berbasis pohon yang lain. Pada penelitian ini berfokus pada peningkatan kinerja algoritma berbasis pohon dengan melakukan normalisasi pada dataset dan hyperparameter tuning pada algoritma klasifikasi dengan menggunakan pencarian grid. Dataset yang digunakan adalah 3 dataset dari ReLink yaitu Apache, Safe, dan Zxing. Setiap model prediksi divalidasi dengan Stratified 10-Fold Cross Validation dan kinerja dievaluasi menggunakan AUC. Dari hasil eksperimen yang didapatkan,hasil prediksi dari pendekatan yang diusulkan lebih baik daripada metode sebelumnya.
IMPLEMENTASI METODE PRINCIPAL COMPONENT ANALYSIS (PCA) DAN MODIFIED K-NEAREST NEIGHBOR PADA KLASIFIKASI CITRA DAUN TANAMAN HERBAL Nurdiansyah, Nurdiansyah; Muliadi, Muliadi; Herteno, Rudy; Kartini, Dwi; Budiman, Irwan
Jurnal Mnemonic Vol 7 No 1 (2024): Mnemonic Vol. 7 No. 1
Publisher : Teknik Informatika, Institut Teknologi Nasional malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36040/mnemonic.v7i1.6664

Abstract

Klasifikasi citra tanaman herbal dapat dilakukan berdasarkan bentuk daun yang dikenal juga sebagai pengenalan citra tanaman herbal. Pada pengenalan citra dilakukan dengan mengidentifikasi ciri bentuk daun tanaman herbal dan dilakukan klasifikasi citra daun tersebut. Jumlah data citra yang digunakan sebagai 200 data yang terbagi kedalam 5 kelas. Sehingga masing-masing kelas terdiri dari 40 data citra. Masyarakat umumnya akan kesulitan untuk mengenal jenis tanaman herbal berdasarkan melihat secara sekilas pada daun. Pada metode PCA digunakan untuk mengurangi dimensi citra daun herbal dan metode Modified KNN digunakan untuk mengklasifikasikan citra daun herbal berdasarkan fitur. Pada pembagian data 6:4 nilai akurasi tertingginya sebesar 89 % pada K=2 dan akurasi terendahnya pada 78 % pada K=9. Pembagian data 7:3 nilai akurasi tertingginya sebesar 87 % pada K=4 dan akurasi terendahnya pada 82 % pada K=9. Dan Pada pembagian data 8:2 nilai akurasi tertingginya sebesar 93 % pada K=3 dan akurasi terendah sebesar 84 % pada K=4.
SISTEM PENDUKUNG KEPUTUSAN PEMILIHAN BIBIT PADI BERKUALITAS PADA LAHAN RAWA MENGGUNAKAN METODE DEMATEL DAN MFEP Ulya, Azizatul; Muliadi, Muliadi; Herteno, Rudy; Farmadi, Andi; Abadi, Friska
Sebatik Vol. 28 No. 1 (2024): June 2024
Publisher : STMIK Widya Cipta Dharma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.46984/sebatik.v28i1.2291

Abstract

Bidang pertanian merupakan salah satu sektor penting di Indonesia. Sebagian besar masyarakat Indonesia bergantung pada sektor ini sebagai petani padi. Adapun tujuan penelitian ini adalah mengetahui hasil akurasi perankingan alternatif bibit padi pada lahan rawa menggunakan metode metode  Decision Trial Making And Evaluation Laboratory (DEMATEL) dan Multifactor Evaluation Process (MFEP). Data yang sudah dikumpulkan kemudian akan dianalisis untuk mendapatkan atribut apa saja yang akan dimasukkan dalam perancangan sistem untuk metode membobotan dan perankingan menggunakan metode DEMATEL dan MFEP. Hasil pembobotan yang didapatkan dengan metode Dematel yaitu umur tanaman adalah 0,2277, tinggi tanaman adalah 0,1961, anakan produktif tanaman adalah 0,1921, ketahanan terhadap hama adalah 0,1294, ketahanan terhadap penyakit adalah 0,0896 dan ketahanan terhadap genangan air adalah 0,1652. Jika nilai bobot dijumlahkan maka hasilnya sama dengan 1. Kesimpulan bahwa Nilai bobot kriteria menggunakan metode Dematel pada pemilihan bibit padi pada lahan rawa yang terdiri dari 6 kriteria, yaitu umur tanaman adalah 0,2277, tinggi tanaman adalah 0,1961, anakan produktif tanaman adalah 0,1921, ketahanan terhadap hama adalah 0,1294, ketahanan terhadap penyakit adalah 0,0896 dan ketahanan terhadap genangan air adalah 0,1652. Nilai perbandingan hasil pemilihan bibit padi pada lahan rawa menggunakan metode Dematel dan MFEP dengan keputusan pihak Balai Penyuluhan Pertanian (BPP) berdasarkan perhitungan akurasi yang didapatkan dari MAE (Mean Absolute Error) adalah 80,42%.
Image Classification of Traditional Indonesian Cakes Using Convolutional Neural Network (CNN) Azizah, Azkiya Nur; Budiman, Irwan; Indriani, Fatma; Faisal, Mohammad Reza; Herteno, Rudy
Computer Engineering and Applications Journal Vol 13 No 2 (2024)
Publisher : Universitas Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18495/comengapp.v13i2.469

Abstract

Indonesia is one of the countries famous for its traditional culinary. Traditional cakes in Indonesia are traditional snacks typical of the archipelago's culture which have a variety of textures, shapes, colors that vary and some are similar so that there are still many people who do not know the name of the cake from the many types of traditional Indonesian cakes. The problem can be solved by creating a traditional cake image recognition system that can be programmed and trained to classify various types of traditional Indonesian cakes. The Convolutional Neural Network method with the AlexNet architecture model is used in this research to predict various kinds of traditional Indonesian cakes. The dataset used in this research is 1846 datasets with 8 classes of cake images. This study trained the AlexNet model with several optimizers, namely, Adam optimizer, SGD, and RMSprop. The best parameters from the model testing results are at batchsize 16, epoch 50, learning rate 0.01 for SGD optimizer and learning rate 0.001 for Adam and RMSprop optimizers. Each optimizer tested produces different accuracy, precision, recall, and f1_score values. The highest test results that have been carried out on the image dataset of typical Indonesian traditional cakes are obtained by the Adam optimizer with an accuracy value of 79%.
Co-Authors Abdullayev, Vugar Achmad Zainudin Nur Adawiyah, Laila Adela Putri Ariyanti Aflaha, Rahmina Ulfah Ahmad Juhdi Ahmad Rusadi Akhtar, Zarif Bin Al Ghifari, Muhammad Akmal Al Habesyah, Noor Zalekha Alfando, Muhammad Alvin Andi - Farmadi Andi Farmadi Andi Farmadi Andi Farmadi Angga Maulana Akbar Antoh, Soterio Arifin Hidayat Aryanti, Agustia Kuspita Athavale, Vijay Anant Azizah, Azkiya Nur Azizah, Siti Roziana Bahriddin Abapihi Dendy Fadhel Adhipratama Dendy Dodon Turianto Nugrahadi Dwi Kartini Dwi Kartini, Dwi Emma Andini Faisal, M. Reza Fatma Indriani Fauzan Luthfi, Achmad Favorisen R. Lumbanraja Fayyadh, Muhammad Naufaldi Febrian, Muhamad Michael Friska Abadi Ghinaya, Helma Hartati Hartati Hermiati, Arya Syifa Huynh, Phuoc-Hai Irwan Budiman Irwan Budiman Itqan Mazdadi, Muhammad Junaidi, Ridha Fahmi Lilies Handayani Lisnawati M Kevin Warendra Mariana Dewi Miftahul Muhaemen Muflih Ihza Rifatama Muhammad Alkaff Muhammad Anshari Muhammad Azmi Adhani Muhammad Denny Ersyadi Rahman Muhammad Itqan Mazdadi Muhammad Noor Muhammad Reza Faisal, Muhammad Reza Muhammad Rizky Mubarok Muhammad Sholih Afif Muhammad Syahriani Noor Basya Basya Muliadi Muliadi MULIADI -, MULIADI Muliadi Muliadi Muliadi Muliadi Muliadi Muliadi Nabella, Putri Nafis Satul Khasanah Ngo, Luu Duc Noor Hidayah Noryasminda Nur Hidayatullah, Wildan Nurdiansyah Nurdiansyah Nursyifa Azizah Oni Soesanto Pratama, Muhammad Yoga Adha Putri Nabella Putri, Nitami Lestari Radityo Adi Nugroho Rahmad Ubaidillah Rahmat Ramadhani Raidra Zeniananto Ramadhan, As`'ary Reza Faisal, Mohammad Rizky Ananda, Muhammad Rozaq, Hasri Akbar Awal Saputro, Setyo Wahyu Saragih, Triando Hamonangan Setyo Wahyu Saputro Siti Aisyah Solechah Suci Permata Sari Suryadi, Mulia Kevin Tri Mulyani Ulya, Azizatul Vina Maulida, Vina Wahyu Ramadansyah Wahyu Saputro, Setyo Zaini Abdan Zamzam, Yra Fatria