Claim Missing Document
Check
Articles

Found 102 Documents
Search
Journal : Jurnal Mahasiswa TEUB

SISTEM PENGATURAN DISSOLVE OKSIGEN MENGGUNAKAN AERATOR PADA IKAN KOI DENGAN METODE FUZZY Faisal Maulana Ibrahim; n/a Rahmadwati; Eka Maulana
Jurnal Mahasiswa TEUB Vol. 10 No. 5 (2022)
Publisher : Jurnal Mahasiswa TEUB

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Aerator is a machine that produces air bubbles that functions to move water in the pond so that the water is rich in dissolved oxygen which is needed by all freshwater fish. The working principle of this tool is to make the surface of the water as much as possible in contact with the air. The goal is that the oxygen content in the water is sufficient and gases and impurities that usually cause rot can be expelled from the water. These air bubbles are very important for fish because these bubbles act as oxygen for fish. This oxygen level is commonly called DO (dissolved oxygen). Many ornamental fish entrepreneurs, especially koi, underestimate the level of dissolved oxygen in water (the use of aerators) both in terms of power consumption, which is not regulated or does not provide a tool in the form of an aerator. For this reason, this research makes aerator speed settings according to the needs of the fish and also saves costs because it does not have to be turned on every time.Keywords: Aerator, koi fish farming, DO, dissolved oxygen in water
IDENTIFIKASI SISTEM PLANT SUHU DAN KELEMBABAN PADA ALAT PENETAS TELUR AYAM DENGAN METODE RECURSIVE LEAST SQUARE Rayyan Ghaus Rahmat; n/a Rahmadwati; Goegoes Dwi Nusantoro
Jurnal Mahasiswa TEUB Vol. 10 No. 5 (2022)
Publisher : Jurnal Mahasiswa TEUB

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

The identification method can be done by observing a physical system that will provide input and output signals. The input and output signals generated by the system will be calculated with the identification method's algorithm to produce filter parameters that can represent the system. The algorithm used in this thesis is Recursive Least Square (RLS). The components contained in the temperature and humidity plant system, namely the Digital Temperature and Humidity sensor (DHT22), a 25 Watt incandescent lamp, and a 24 Volt mist maker. The structure of the model used in this thesis is the Auto Regressive Moving Average Exogenous (ARMAX). The order used in this thesis is second-order according to the residual analysis, indicating that the second-order graph is between the dotted line and close to the zero axis point. The parameter results obtained at the plant temperature are a1 = -1.331; a2 = - 0.3402; b1 = 0.1775; b2 = –0,1682; c1 = –0.5658; c2 = –0,2031. In plant humidity is a1 = -0.9459; a2 = -0.043202; b1 = 0.008937; b2 = 0.002168; c1 = 0.05638; c2 = 0.03856. Akaike's FPE validation results on the temperature and humidity plant model are 0.009251 and 0.1663, respectively. The accuracy test results with the setpoint signal at the plant temperature and humidity were FIT = 95.43%, respectively; FIT = 93.86%.Keywords: Temperature and Humidity Plant, System Identification, ARMAX, RLS
SISTEM PENGATURAN PH AIR PADA AKUARIUM IKAN KOI MENGGUNAKAN FUZZY SUGENO Muh. Ghiffari Caesa Ramadahan; n/a Rahmadwati; Eka Maulana
Jurnal Mahasiswa TEUB Vol. 10 No. 5 (2022)
Publisher : Jurnal Mahasiswa TEUB

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Koi is one of the largest contributors to ornamental fish exports based on data from the 2014-2018 KKP, koi exports have increased from 767 kg in 2017 to 2,162 kg. The high demand for koi encourages cultivators to increase their koi fish farmingbusiness. Koi live in freshwater waters with a pH ranging from 7.5 to 8.5 with a tolerance of 6-9 in calm water currents and have many aquatic plants. Continuous monitoring of water quality, especially pH levels, is very much needed. Monitoring the pH level of water in fish farming ponds is currently still done using the manual method, namely by measuring directly to the aquarium which takes a long time and is inefficient. So that this problem can be overcome, a pH control device in the aquarium is made that can monitor and control pH levels continuously in the aquarium. Controlling pH levels in aquarium water is done by giving a certain amount of acid (pH down) or alkaline (pH up) solution that can increase and decrease pH levels so that the pH in aquarium water is always stable in a predetermined range. The acid or base solution is sucked up by a water pump motor to be discharge
Sistem Pengkondisian Otomatis Suhu Dan Kekeruhan Air Budidaya Ikan Patin Berbasis Internet of Things (IoT) Lovinardo Devharo; n/a Rahmadwati; Ponco Siwindarto
Jurnal Mahasiswa TEUB Vol. 10 No. 6 (2022)
Publisher : Jurnal Mahasiswa TEUB

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Internet of Thing (IoT) is a concept where an object has the ability to transfer data over a network without requiring human-to-human or human-to-computer interaction. IoT really helps technological developments, especially in terms of monitoring. In this study, an IoT based automatic monitoring system for catfish that designed focus on the quality of its water. The variables that are controlled in this system are temperature and turbidity of water in the fish tank. Temperature control occurs when the temperature sensor detects a temperature lower than ideal temperature, then the system will turn on the heater until the temperature back to ideal. Water turbidity control occurs when the turbidity sensor detects that the water turbidity exceeds the normal limit, then the system will open the solenoid valve so that water will be discharged. The values of water temperature and turbidity will be displayed realtime on the LCD and Blynk.Keywords— catfish cultivation, internet of things, automatic, temperature, turbidity, monitoring
SISTEM PENGONTROLAN SUHU DAN KELEMBAPAN PADA ALAT PENGONTROL PENETAS TELUR AYAM MENGGUNAKAN PID CONTROLLER DAN KONTROL ON-OFF Afdhol Goyanda Hidayatullah; n/a Rahmadwati; Goegoes Dwi Nusantoro
Jurnal Mahasiswa TEUB Vol. 10 No. 6 (2022)
Publisher : Jurnal Mahasiswa TEUB

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Peternak ayam mendapatkan tantangan untuk memenuhi kebutuhan ayam yang semakin meningkat setiaap tahunnya dengan menjaga kualitas dan kuantitasnya. Oleh karena itu, dalam upaya peningkatan usaha pembibitan ayam, para peternak ayam menggunakan inkubator untuk membantu dalam proses penetasan telur ayam. Selain itu inkubator juga dapat meningkatkan kualitas dan kuantitas penetasan telur sehingga para peternak ayam bisa lebih mengembangkan usaha dan meningkatkan keuntungan usaha mereka. adapun konsep dari inkubator yaitu dengan mengontrol lingkungan dengan menggunakan parameter yang ideal selama 21 hari dalam proses penetasan telur, parameter-parameter yang dikontrol diantaranya suhu, kelembaban, dan posisi telur. Suhu yang ideal dalam proses penetasan telur untuk hari ke satu sampai 18 berkisar 36°–38° C dan untuk kelembabannya 55-65%. Setelah hari ke 18, suhu sebaiknya diturunkan menjadi 35°– 37° C dan untuk kelembabannya dinaikkan menjadi 70-80%. Sedangkan untuk posisi telur di gerakan dalam kurun waktu tertentu dan konstan. Setelah proses tadi dilakukan maka para peternak dapat merasakan tingkat keberhasilan antara 80-90%. Pada penelitian ini dirancang sistem untuk mengontrol suhu ruangan menggunakan lampu pijar yang dikontrol menggunakan kontroler PID dan mengontrol kelembaban ruangan menggunakan humidifier yang dikontrol menggunkan Kontrol On-Off. perancangan dilakukan dengan menggunakan metode kurva Ziegler Nichols. Kemudian didapatkan parameter PID dengan aturan Ziegler Nichols kurva reaksi yaitu nilai Kp sebesar 7.407, Ki sebesar 0.04115, dan Kd sebesar 333.315. Respon sistem pengontrolan suhu pada hari ke 1-hingga ke-18 dengan setpoint 36-38℃ memiliki settling time (ts) = 880s dan error steady state sebesar = 0,27%.Dan respon sistem pengontrolan suhu pada hari ke 18-hingga selesai dengan setpoint 35-37℃ memiliki settling time (ts) = 140s dan error steady state sebesar = 0,277%.Sistem pengontrolan kelembaban dibuat dengan menggunakan kontroler on-off. Respon sistem pengontrolan kelembaban pada hari ke-1 hingga ke-18 dengan setpoint 55-65% memiliki time rise (tr) = 1670s, dan memiliki settling time (ts) = 1870s. Batas atas dan bawah saat steady state adalah 60,2 dan 59,6. Dan juga terdapat error steady state sebesar: 0,562%. Respon sistem pengontrolan kelembaban pada hari ke-1 hingga ke-18 dengan setpoint 70-80% memiliki time rise (tr) = 2130s, dan memiliki settling time (ts) = 2270s. Batas atas dan bawah saat steady state adalah 75,8 dan 74,6. Dan juga terdapat error steady state sebesar: 0,531%. Kata Kunci: Penetasan telur ayam, inkubator, suhu dan kelembaban, kontrol PID, kontrol On-Off
RANCANG BANGUN SISTEM KENDALI JARAK JAUH NUTRISI TANAMAN HIDROPONIK BERBASIS INTERNET OF THINGS Zulfa Fahrunnisa; Eka Maulana; n/a Rahmadwati
Jurnal Mahasiswa TEUB Vol. 11 No. 2 (2023)
Publisher : Jurnal Mahasiswa TEUB

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Hydroponics is a method of cultivating plants without using soil media. Hydroponics utilizes water/nutrient mineral solutions needed by plants and other materials as a substitute for soil media. Plants need the right amount of nutrients to grow and develop optimally. This research aims to design a tool that can provide the number of nutrients automatically with nutrient levels that can be adjusted remotely with the concept of the Internet of Things. The control system used is Mamdani fuzzy logic withinput offsets for nutrient content and water level in the reservoir, as well as output for the duration of the nutrient and water pumps to reach a setpoint that can be determined via the Blynk IoT platform. The results showed an accuracy of 93.14% for nutrient control and 97.83% for water level control in reaching the setpoint. Keywords: Fuzzy Logic, Hydroponics, Internet of Things, Nutrition Control System.
SISTEM PENGENDALIAN SUHU DAN KELEMBAPAN MENGGUNAKAN KONTROLER PID PADA PLANT INKUBATOR BAYI Rafa Raihan Fadilla; n/a Rahmadwati; Moch. Rusli
Jurnal Mahasiswa TEUB Vol. 11 No. 2 (2023)
Publisher : Jurnal Mahasiswa TEUB

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Many infant mortality rates are due to premature events. Premature babies will have difficulty regulating their body temperature. If not treated properly, the baby will suffer hypothermia. To overcome this, you can use a baby incubator as a heater. The baby incubator's temperature is maintained within normal limits of around 33°C–35°C with a relative humidity of 40% RH-60% RH to help stabilize the baby's body temperature. However, in most baby incubators, the system is still controlled manually. So an automatic temperature and humidity control system is needed in the baby incubator. For temperature control, a PID controller is used with a value of Kp = 11,4, Ki = 0,03, and Kd = 1100,1, while humidity control is used with an on-off controller. According to theresults of the PID controller experiments, steady state error was 0,65%, settling time (5%) 5,81 minutes, settling time (2%) 7,75 minutes, and settling time (0,5%) 9,7 minutes. Meanwhile, the results of the humidity experiments with a limit of 58% RH–62% RH, the response obtained was a settling time of 3,4 minutes. Keywords— Premature Babies, Incubator, Ziegler Nichols. DAFTAR PUSTAKA[1] Lawn, J. E., dan Kinney, M. 2014. Preterm Birth: Now the Leading Cause of Child Death Worldwide. Science Translational Medicine. 6 (263): 1-3.[2] Zermani, M. A., Feki, E., dan Mami, A. 2014. Building Simulation Model of Infant Incubator System with Decoupling Predictive Controller. IRBM. 35 (4): 189-201.[3] Singla, S. K., dan Singh, V. 2015. Design of a Microcontroller Based Temperature and Humidity Controller for Infant Incubator. Journal of Medical Imaging and Health Informatics. 5 (4): 704-708.[4] Visscher, M. O., Adam, R., Brink, S., dan Odio, M. 2015. Newborn Infant Skin: Physiology, Development, and Care. Clin Dermatol. 33 (3): 271-280.[5] Hutagaol, H. S., Darwin, E., dan Yantri, E. 2014. Pengaruh Inisiasi Menyusu Dini (IMD) terhadap Suhu dan Kehilangan Panas pada Bayi Baru Lahir. Jurnal Kesehatan Andalas. 3 (3): 332-338.[6] Wulandari, R. A., dan Praborini, A. 2018. Anti Stres Menyusui. Edisi ke-1. Kawan Pustaka. Jakarta.[7] Hammarlund, K., Nilsson, G. E., Oberg, P. A., dan Sedin, G. 1977. Transepidermal Water Loss in Newborn Infants. I. Relation to Ambient Humidity Site of Measurement and Estimation of Total Transepidermal Water Loss. Acta Paediatrica. 66 (5): 553-562.[8] Rutter, N. 2000. Clinical Consequences of an Immature Barrier. Semin Neonatal. 5 (4): 281-287.[9] Latif, A., Widodo, H. A., Atmoko, R. A., Phong, T. N., dan Helmy, E. T. 2021. Temperature and Humidity Controlling System for Baby Incubator. Journal of Robotics and Control. 2 (3): 190-193.[10] Hasan, A. 2019. Sistem Monitoring Suhu dan Kelembaban pada Inkubator Bayi Berbasis Internet of Things (IoT). Skripsi. Fakultas Teknik Universitas Semarang, Semarang.[11] Yudaningtyas, E. 2017. Belajar Sistem Kontrol Soal & Pembahasan. Edisi ke-1. Universitas Brawijaya Press. Malang.[12] Ogata, K. 1997. Teknik Kontrol Automatik (Sistem Pengaturan). Edisi ke-1. Erlangga. Jakarta.[13] Ogata, K. 2010. Modern Control Engineering. Edisi ke-5. Prentice Hall. New Jersey
PERANCANGAN SISTEM BACKUP DAYA DAN TELEMONITORING DATA DENGAN PROTOKOL MQTT PADA SMART INKUBATOR BAYI Geraldio Ramadhan Safitri; n/a Rahmadwati; Moch. Rusli
Jurnal Mahasiswa TEUB Vol. 11 No. 2 (2023)
Publisher : Jurnal Mahasiswa TEUB

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Indonesia is ranked the fifth country with the world’s most preterm babies. Therefore, the demand for infant incubators remains high. However, most infant incubators today still have some drawbacks, namely, the incubator relies on a grid power source. If a power outage happens, the incubator cannot be used. This research aims to solve the issue by designing a backup system for the incubator integrated with the Internet of Things (IoT) concept. The proposed system consists of an Automatic Transfer Switch (ATS) system, an automatic charging system, and a telemetry unit that can transmit incubator status data to a mobile application via the MQTT protocol. The test result shows that the designed ATS system can switch sources with a delay of 1.085 seconds for the PLN grid – inverter and 0.245 seconds for the inverter – PLN grid. The automatic charging system successfully recharges the Valve Regulated Lead Acid (VRLA) battery using a 3-stage charging method. Furthermore, the designed system can send incubator status data via MQTT protocol to mobile applications with a delivery time of 0.110 seconds. The designed MQTT topology has high scalability proven by the test, that it can connect with up to 1000 clients on one topic. Index Terms—Infant Incubator, Backup Power System, MQTT DAFTAR PUSTAKA[1] World Health Organization, “Born too soon,” Neuroendocrinol. Lett., vol. 25, no. SUPPL. 1, pp. 133–136, 2012, doi: 10.2307/3965140.[2] M. Ali, M. Abdelwahab, S. Awadekreim, and S. Abdalla, “Development of a Monitoring and Control System of Infant Incubator,” 2018. doi: 10.1109/ICCCEEE.2018.8515785.[3] PT PLN (Persero), “PT PLN in Number 2021 (Statistik PLN 2021),” pp. 1–102, 2021, [Online]. Available: https://web.pln.co.id/statics/uploads/2022/08/StatistikPLN-2021-29-7-22-Final.pdf[4] V. Hall, E. Geise, and N. H. Kashou, “The IncuLight: Solar-powered infant incubator,” 2014. doi: 10.1109/GHTC.2014.6970285.[5] I. Roihan, K. Tjandaputra A., E. A. Setiawan, and R. A. Koestoer, “Installing and testing the grashof portable incubator powered using the solar box ‘becare’ for remote areas without electricity,” Evergreen, vol. 7, no. 4, 2020, doi: 10.5109/4150516.[6] M. Syahid, D. Irianto, E. Sunarno, and S. St, “Rancang Bangun Charger Baterai dan Automatic Transfer Switch ( ATS ) Panel Surya – PLN Untuk Sumber Daya Tempat Sampah Otomatis,” J. Elektro PENS, vol. 2, no. 2, 2014.[7] I. A. Lazuardi, I. W. Farid, and C. W. Priananda, “Automatic Transfer Switch Dilengkapi Fitur Monitoring Website pada On-Grid Solar Home System,” J. Tek. ITS, vol. 10, no. 2, 2021, doi: 10.12962/j23373539.v10i2.68713.[8] I. Sukma et al., “Real-time wireless temperature measurement system of infant incubator,” Int. J. Electr. Comput. Eng., vol. 13, no. 1, pp. 1152–1160, 2022, doi: 10.11591/ijece.v13i1.pp1152-1160.
SIMULASI TWO LEVEL BOOST DC DC CONVERTER MENGGUNAKANSOFTWARE MATLAB SIMULINK Muhammad Wildan Nashrullah; Mochammad Rusli; n/a Rahmadwati
Jurnal Mahasiswa TEUB Vol. 11 No. 4 (2023)
Publisher : Jurnal Mahasiswa TEUB

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Two level boost dc dc converter is a converter which has the advantage of being more economical if used in voltage increases in a large range. This research begins with data testing using MATLAB software, and emphasises the simulation by paying more attention to the parameters to adopt output voltage variations. Mathematical models in a physical system can be obtained in two ways, namely through analytical and experimental approaches. To obtain a system model is by using equations from the laws of physics and the components contained in the system. This research aims to boosting voltage in two level boost DC DC converter using Matlab simulink software. The method used in this research is a method with an experimental approach or identification method is the formation of a mathematical model of a physical system based on observation data by recording every relation of input and output data from a physical system. Then the data pairs are calculated with an algorithm from the identification method so that a mathematical equation that can represent the actual physical system will be obtained. Variations of conditions used in this analysis include changes in power supply of 250V, 360 Ω resistor, 4.5573.10-4 H inductor and 1.4583.10-6 F capacitor, and 16.67% duty cycle. The results obtained in this study are the influence of the variable values used to increase the output voltage generated by the fuel cell from 250V to 600V, as well as the modelling of the two-level DC DC boost converter to get the output voltage as desired is A1= -1.6298 A2= 0.6608 B1= -3.2604 B2=4.0692. Index terms—boost converter, TLBC, system identification, matlab simulink.
KLASIFIKASI PENYAKIT MELANOMA MENGGUNAKAN WHALE OPTIMIZATION ALGORITHM SEBAGAI SELEKSI FITUR Aiman Muhamad Basymeleh; Panca Mudjirahardjo; n/a Rahmadwati
Jurnal Mahasiswa TEUB Vol. 11 No. 4 (2023)
Publisher : Jurnal Mahasiswa TEUB

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

The biggest challenge in melanoma is distinguishing between benign and malignant skin diseases with various problems related to time and patient health to differentiate lesions in patients. To reduce these problems, an image classification system is required using several feature extraction methods on images, namely Gray Level Co-occurrence Matrix, contour features, and HSV image features. In this study, feature selection was also carried out using a metaheuristic algorithm, namely the Whale Optimization Algorithm (WOA), as feature optimization in the next stage, which is the classification stage using the Multilayer Perceptron Neural Network method. However, the results of testing the Multilayer Perceptron Neural Network on these feature extractions showed very good performance, especially in the case of HSV color feature extraction and Gray Level Co-occurrence Matrix (GLCM). In addition, the feature selection also showed the same results from the same feature extraction with a relatively faster prediction time. Keywords : Melanoma, Feature Extraction, Feature Selection, Whale Optimization Algorithm, Classification
Co-Authors Achmad Ernanda T. P. Aditya Desta Pranata Adrian Alkahfi Fauzi Afdhol Goyanda Hidayatullah Afriandika Brillian Agung Pambudi Ahmad Farid Nurrohman S. Aiman Muhamad Basymeleh Ainur Rosyidatul Husna Ajeng Atha Ardella Cahyanti Akhmad Sabarudin Akio Kitagawa Al Jihad Andi Saungnaga Alva Kosasih Alvi Kusuma Wijaya Andik Setiawan Andriyan Rizky Sigit Anggara Truna Negara Angger Abdul Razak Anisari Mei Prihatini Ardyanto Dwi Kurniawan Arga Rifky Nugraha Aulia Muhammad Aulia Wiendyka Yudha Aziz Muslim Azizurrahman Rafli Bambang Siswojo Bambang Siswojo Bambang Siswojo Boby Yusuf Habibi Budi Prasetyo Dean Passaddhi Deron Liang Dharmawan - Diannata Rahman Y. Didit Afrian Nugraha Dyah Ayu Anggreini T Dzikrullah Akbar Eka Bayu Prinandika Eka Maulana Eka Maulana Ergan Pratu Handistya Erni Yudaningtyas Erni Yudaningtyas Erni Yudhaningtyas Faisal Maulana Ibrahim Faishal Farras Wasito Faiza Alif Fakhrina Falah Heksananda Faridzky Adhi Baskara Febi Syahputra Frans W. P. Napitupulu Gabriel Andriano Bramantyo Garneta Rizke Ayu Cempaka Geraldio Ramadhan Safitri Gigih Gumilar Gigih Mandegani Godam Ardianto Goegoes Dwi Nusantoro Goegoes Dwi Nusantoro Golshah Naghdy Gosi Desgraha Gristita Tresna Murti Gurnita Fajar Gemilang Hadi Suyono Hary Soekotjo Dachlan Heri Susanto I Putu Manu Satyam Idam Almualif Ika Kusumaning Putri Indyanto Gadang Alfaruki Jefry Sugihatmoko Jesse Sebastian Jodie Revel Palasroha Joko Prasetyo Kevin Putra Pratama K. R. Kukuh Nur Aji Kukuh Priambodo Lovinardo Devharo Luthfan Prayoga Luthfiyah Rachmawati M. Aldiki Febriantono M. Aziz Muslim M. Hadafi Maulana I. M. Kholid Mawardi M. Yufrizal Afif Mahaestra Fachrurrozi Mahdin Rohmatillah Masykur Huda Maulana, Eka Moch. Rusli Mohammad Bimo Digdoyo Mohammad Zidnil Maarif A. Mudjirahardjo, Panca Muh Wahid Anshori Riza Muh. Ghiffari Caesa Ramadahan Muhamad Faishol Arif Muhamad Ibnu Fajar Muhamamd Dimas Ali Cahya Muhammad Aziz Muslim Muhammad Aziz Muslim Muhammad Dieny Amrullah Muhammad Dzikrullah Suratin, Muhammad Dzikrullah Muhammad Fahmi Illmi Muhammad Fauzan Edy Purnomo Muhammad Izaaz Rozan Muhammad Nurhilal Hamdi Muhammad Oktafian Ulal Ma'arif Muhammad Rizki Rafido Muhammad Sholahudin Nur Anwar Muhammad Wildan Nashrullah Muhammad Zulfikri Muhammad Zulfikri n/a Abdullah n/a Purwanto n/a Retnowati Nanang Sulistiyanto Nandito Ardaffa Putra Nugroho Dwi Aprillianto Nuni Hutami Stanto Onny Setyawati Panca Mudjirahardjo Pandu Arya Zulkarnain Ponco Siwindarto Prihadya Surya Ramdhani R. Afin Priswiyandi Radek Purnomo Raden Arief Setyawan Rafa Raihan Fadilla Rahman, Alif Rasyadan Izzatur Rakhmad Romadhoni Rama Hasani Rayyan Ghaus Rahmat Rif'an, Mochammad Rifan Pradestama Giantara Rifqi Hilman Wangsawinangun Rizki Zein Achmadi Rizky Adi Sanjaya Robintang Sotardodo Situmorang Rudy Yuwono Rusli, Mochammad Ruth Astari Anindita Safuddin Zuhri Sari, Sapriesty Nainy Shaskia Vilardl Ri Cahya Shaufi Firdausi Luthfi Sholeh Hadi P. Sholeh Hadi Pramono Subairi Subairi Sultoni Sultoni Suyono, Hadi Topan Firdaus Tri Agung Prasetio Tri Wahyu Oktaviana Putri Valen Kristian Eriski Vita Kusumasari Waru Djuriatno Wia Siisgo Alnakulla Wijono Wijono Wirangga Luvianca Yudo Jati Wicaksono Yuyu Wahyu Zulfa Fahrunnisa Zzyo Chandra