ABSTRACT The progress of a country is seen from various indicators and one of them is the welfare of its population. The most basic welfare of the population in an agrarian country like Indonesia can be seen from the welfare of its farmers. The indicator that is commonly used to measure the welfare of farmers is by using Farmer Exchange Rates (NTP). However, it is known that the exchange rate of farmers during the Covid 19 pandemic has experienced a very drastic decline. This is difficult for the government to make predictions. So a special method is needed in handling it. In this study, two methods were used, namely single exponential smoothing and random forest. From the research results, it was found that the MAPE value in single exponential smoothing was smaller when compared to the random forest. However, the fact is that the exchange rate of farmers every year always increases. Therefore it can be concluded that exponential smoothing is weak against outlier data.Keywords: Exponential ,Smoothing, Random Forest, MAPE, Forecasting ABSTRAKMaju atau tidaknya suatu negara dilihat dari berbagai indikator dan salah satunya yaitu kesejahteraan penduduknya. Kesejahteraan penduduk yang paling mendasar pada negara agraris seperti Indonesia dapat dilihat dari kesejahteraan petaninya. Indikator yang umum digunakan untuk mengukur kesejahteraaan petani yaitu dengan menggunakan Nilai Tukar Petani (NTP). Akan tetapi diketahui bahwa nilai tukar petani selama pandemi covid 19 melangalami penurunan yang sangat drastis. Hal ini sulit pagi pemerintah dalam melakukan prediksi. Sehingga di butuhkan metode khusus dalam penanganannya. Dalam penelitian ini menggunakan dua metode yaitu singgel exponential smoothing dan random forest. Dari hasil penelitian didapatkan hasil bahwa nilai MAPE pada single exponential smoothing lebih kecil jika dibandingkan dengan random forest. Akan tetapi faktanya nilai tukar petani setiap tahunnya selalu mengalami peningkatan. Oleh karena itu dapat disimpulkan bahwa exponential smoothing lemah terhadap data outlier. Kata Kunci: Exponential ,Smoothing, Random Forest, MAPE, Peramalan