Articles
            
            
            
            
            
                            
                    
                        Improvement of Cluster Importance Algorithm with Sentence Position for News Summarization 
                    
                    Nur Hayatin; 
Gita Indah Marthasari; 
Syadza Anggraini                    
                     Proceeding of the Electrical Engineering Computer Science and Informatics Vol 5: EECSI 2018 
                    
                    Publisher : IAES Indonesia Section 
                    
                         Show Abstract
                        | 
                             Download Original
                        
                        | 
                            
                                Original Source
                            
                        
                        | 
                            
                                Check in Google Scholar
                            
                        
                                                    |
                            
                            
                                Full PDF (704.002 KB)
                            
                                                                                    
                            | 
                                DOI: 10.11591/eecsi.v5.1624                            
                                            
                    
                        
                            
                            
                                
Text summarization is one of the ways to reduce large document dimension to obtain important information from the document. News is one of information which usually has several sub-topics from a topic. In order to get the main information from a topic as fast as possible, multi-document summarization is the solution, but sometimes it can create redundancy. In this study, we used cluster importance algorithm by considering sentence position to overcome the redundancy. Stages of cluster importance algorithm are sentence clustering, cluster ordering, and selection of sentence representative which will be explained in the subsections below. The contribution of this research was to add the position of sentence in the selection phase of representative sentence. For evaluation, we used 30 topics of Indonesian news tested by using ROUGE-1, there were 2 news topics that had different ROUGE-1 score between using cluster importance algorithm by considering sentence position and using cluster importance. However, those 2 news topics which used cluster importance by considering sentence position have a greater score of Rouge-1 than the one which only used cluster importance. The use of sentence position had an effect on the order of sentence on each topic, but there were only 2 news topics that affected the outcome of the summary.
                            
                         
                     
                 
                
                            
                    
                        Sarcasm Detection on Indonesian Twitter Feeds 
                    
                    Dwi A. P. Rahayu; 
Soveatin Kuntur; 
Nur Hayatin                    
                     Proceeding of the Electrical Engineering Computer Science and Informatics Vol 5: EECSI 2018 
                    
                    Publisher : IAES Indonesia Section 
                    
                         Show Abstract
                        | 
                             Download Original
                        
                        | 
                            
                                Original Source
                            
                        
                        | 
                            
                                Check in Google Scholar
                            
                        
                                                    |
                            
                            
                                Full PDF (393.127 KB)
                            
                                                                                    
                            | 
                                DOI: 10.11591/eecsi.v5.1724                            
                                            
                    
                        
                            
                            
                                
In social media, some people use positive words to express negative opinion on a topic which is known as sarcasm. The existence of sarcasm becomes special because it is hard to be detected using simple sentiment analysis technique. Research on sarcasm detection in Indonesia is still very limited. Therefore, this research proposes a technique in detecting sarcasm in Indonesian Twitter feeds particularly on several critical issues such as politics, public figure and tourism. Our proposed technique uses two feature extraction methods namely interjection and punctuation. These methods are later used in two different weighting and classification algorithms. The empirical results demonstrate that combination of feature extraction methods, tf-idf, k-Nearest Neighbor yields the best performance in detecting sarcasm.
                            
                         
                     
                 
                
                            
                    
                        Opinion Extraction of Public Figure Based on Sentiment Analysis from Twitter 
                    
                    Nur Hayatin; 
Mustika Mentari; 
Abidatul Izzah                    
                     IPTEK The Journal of Engineering Vol 1, No 1 (2014) 
                    
                    Publisher : Lembaga Penelitian dan Pengabdian kepada Masyarakat 
                    
                         Show Abstract
                        | 
                             Download Original
                        
                        | 
                            
                                Original Source
                            
                        
                        | 
                            
                                Check in Google Scholar
                            
                        
                                                                                    
                            | 
                                DOI: 10.12962/j23378557.v1i1.a434                            
                                            
                    
                        
                            
                            
                                
Twitter is a microblog that can generate an information from users such as sentiment about public figures. Sentiment analysis of public figure interpret the positive or negative response. This study aims to create system that automatically can extract the opinion about public figure based on sentiment analysis in twitter using two novel features, they are specific term and number of followers public figures lover and hater. Several step to determine the sentiment of public figure are preprocessing, weighting, classifying, and determining sentiment response. In this paper we use six public figures to be observed. This research resulting precision 99%, recall 75%, and accuracy 76,67%.
                            
                         
                     
                 
                
                            
                    
                        Pengembangan Aplikasi Asisten Pintar Pembuka Al Qur’an 30 Juz dengan Perintah Voice Command 
                    
                    Amarul Akbar; 
Shofiyah; 
Nur Hayatin; 
Ilyas Nuryasin                    
                     Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol 5 No 5 (2021): Oktober2021 
                    
                    Publisher : Ikatan Ahli Informatika Indonesia (IAII) 
                    
                         Show Abstract
                        | 
                             Download Original
                        
                        | 
                            
                                Original Source
                            
                        
                        | 
                            
                                Check in Google Scholar
                            
                        
                                                    |
                            
                            
                                Full PDF (803.331 KB)
                            
                                                                                    
                            | 
                                DOI: 10.29207/resti.v5i5.3541                            
                                            
                    
                        
                            
                            
                                
Many developers of digital Qur'an applications today still use tap to scrolling to run applications, although the features are interesting. This makes it less effective and efficient in opening the Qur'an. As is the case during the taklim assembly, some da'i are very interactive with jama'ah, asking to open certain surahs and verses so that there are some who have difficulty in searching. Therefore, the need for the Qur'anic application with voice command command to facilitate users. This research is the development of the Qur'an application with voice recognition feature. Using the waterfall method in development, voice command with google speech API as a voice command of surah and verse calling in the Qur'an application 30 juz. Conducted 10 randomized experiments with calls in the form of play or open surahs and certain verses give a 90% accuracy result. Commands can be given when online or offline. Then the use of google speech API can be very useful for use in the development of other applications.
                            
                         
                     
                 
                
                            
                    
                        Rancang Bangun Aplikasi Mobile Survey Pendamping Program Keluarga Harapan (Studi Kasus: UPPKH Dinas Sosial dan Tenaga Kerja Kota Batu) 
                    
                    Muhammad Rojib Saiful; 
Galih Wasis Wicaksono; 
Nur Hayatin                    
                     DoubleClick: Journal of Computer and Information Technology Vol 1, No 2 (2018) 
                    
                    Publisher : Universitas PGRI Madiun 
                    
                         Show Abstract
                        | 
                             Download Original
                        
                        | 
                            
                                Original Source
                            
                        
                        | 
                            
                                Check in Google Scholar
                            
                        
                                                    |
                            
                            
                                Full PDF (230.061 KB)
                            
                                                                                    
                            | 
                                DOI: 10.25273/doubleclick.v1i2.2125                            
                                            
                    
                        
                            
                            
                                
UPPKH Dinas Sosial dan Tenaga Kerja Kota Batu ini, merupakan satu dari beberapa instansi pemerintah yang belum menerapkan sistem informasi manajemen pengolahan data dan masih melakukan input data di setiap aktivitasnya masih secara manual. Hal itu menjadikan kendala bagi instansi pemerintahan tersebut untuk meningkatkan kinerja para pendamping dalam menyediakan informasi yang efektif dan efisien. Pengolahan data yang masih manual ini menimbulkan berbagai masalah. Diantaranya yang timbul dari permasalahan pendamping dalam menjalankan tiap tugasnya harus menunggu data dari admin untuk survei ke setiap calon anggota peserta PKH. Dan permasalahan yang lain yaitu sulitnya admin untuk mengetahui informasi laporan data PKH.  Dan untuk mengatasi permasalahan yang ada pada kasus ini penulis menganalisis dan merancang sebuah aplikasi yang diharapkan dapat membantu tugas para pendamping dan admin, dimulai dari pengumpulan data menggunakan wawancara, observasi, dan penelitian kepustakaan. Dan aplikasi yang digunakan dalam implementasi sistem, yaitu database MySQL, Webservice, PHP Codeigniter dan Android sebagai bahasa pemrogramannya. Sistem ini mengintegrasikan aplikasi android dengan aplikasi web based menggunakan web service. Web Service menyediakan standar komunikasi di antara berbagai aplikasi software yang berbeda dan dapat berjalan di berbagai platform maupun framework. Sistem ini dibuat untuk membantu mempercepat proses penyelesaian pekerjaan seperti pada proses pendamping dan admin.
                            
                         
                     
                 
                
                            
                    
                        Measuring User Readiness of Web-based Encyclopedia for Kids based on Technology Readiness Index 
                    
                    Gita Indah Marthasari; 
Nur Hayatin; 
Evi Dwi Wahyuni; 
Rellanti Diana Kristy                    
                     JURNAL MEDIA INFORMATIKA BUDIDARMA Vol 4, No 2 (2020): April 2020 
                    
                    Publisher : STMIK Budi Darma 
                    
                         Show Abstract
                        | 
                             Download Original
                        
                        | 
                            
                                Original Source
                            
                        
                        | 
                            
                                Check in Google Scholar
                            
                        
                                                                                    
                            | 
                                DOI: 10.30865/mib.v4i2.2005                            
                                            
                    
                        
                            
                            
                                
Readiness level measurement of users who uses a new technology is needed to determine the success of technology to get a recommendation for further technology development. Technology Readiness Index (TRI) is a method to measure the user readiness level to a new technology. The approach is carried out by using the TRI method more personally, where measurements are made using four variables, i.e. optimism (optimism), innovativeness (innovation), discomfort (inconvenience), and insecurity (insecurity). This method will be implemented to the Anapedia application. Anapedia is a new technology of open web-based encyclopedia for children that is still needs developing and testing. Data collection in this study was carried out using a questionnaire research instrument that distributed to students and teachers in an elementary school. From the measurement of the level of readiness of users taken from 108 respondents, it was found that the level of readiness of Anapedia users was at a high technology readiness with value of 3.63
                            
                         
                     
                 
                
                            
                    
                        The Development of Mobile Application Based Customer Service System in Bank Sampah Malang 
                    
                    Nur Hayatin; 
Bayu Mavindo; 
Eko Budi Cahyono                    
                     Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control Vol 2, No 4, November-2017 
                    
                    Publisher : Universitas Muhammadiyah Malang 
                    
                         Show Abstract
                        | 
                             Download Original
                        
                        | 
                            
                                Original Source
                            
                        
                        | 
                            
                                Check in Google Scholar
                            
                        
                                                    |
                            
                            
                                Full PDF (310.484 KB)
                            
                                                                                    
                            | 
                                DOI: 10.22219/kinetik.v2i4.266                            
                                            
                    
                        
                            
                            
                                
Malang Waste Bank, or commonly called Bank Sampah Malang (BSM), is a legal entity of incorporated cooperatives built by the Malang municipal government serving as a container of waste management, especially dry waste. During this time, the customer service process conducted in BSM has been not optimal, especially its online service. Some services have been accessible online through website but the information is limited only to the list of prices and types of waste received by BSM. While other necessary information needed by the customers such as balance checking, garbage collection schedule checking, and information about the types of saving managed by BSM has not been covered by the existing online system yet. This research has built an online customer service system based on mobile applications and SMS gateways for BSM. The purpose of the system is to facilitate the customers of BSM to obtain information about the garbage bank, especially for customers having high mobility. Interviews and observation are used as the method of the analysis of the system requirements. Meanwhile, the applications such as MySQL database, Web service, PHP CodeIgniter, SMS Gateway and Android as a language programming are used to develop the system. This system integrates android applications with web based applications by using web service. This system is made so that customers get better service. Evaluation results show the system that has been built has been successfully tested.
                            
                         
                     
                 
                
                            
                    
                        Gambaran Kadar IgG Anti phenolic glycolipid-1 (PGL-1) pada Pasien Morbus Hansen yang Menjalani Pengobatan Multy Drug Therapy 
                    
                    Sri Wahyuni; 
Siska Kusuma Wardani; 
Yogo Suwiknyo; 
Nur Hayatin                    
                     Jurnal Sintesis: Penelitian Sains, Terapan dan Analisisnya Vol 1 No 1 (2020): Juni 2020 
                    
                    Publisher : Fakultas Sains, Teknologi, dan Analsisi Institut ilmu Kesehatan Bhakti Wiyata 
                    
                         Show Abstract
                        | 
                             Download Original
                        
                        | 
                            
                                Original Source
                            
                        
                        | 
                            
                                Check in Google Scholar
                            
                        
                                                    |
                            
                            
                                Full PDF (393.432 KB)
                            
                                                                    
                    
                        
                            
                            
                                
Morbus Hansen merupakan penyakit menular yang disebabkan oleh bakteri Mycobacterium leprae. Untuk pengobatan penyakit ini menggunakan Multy Drug Therapy (MDT). Pengobatan ini dapat menghambat perkembangan dan membunuh bakteri M. leprae. IgG Anti phenolic glycolipid-1 (PGL-1) merupakan pemeriksaan untuk deteksi M. leprae. Tujuan penelitian ini untuk mengetahui gambaran kadar Imunologlobulin G (IgG) anti PGL-1 pada pasien Morbus Hansen yang menjalani pengobatan MDT. Metode pemeriksaan menggunakan diskriptif dengan kuota sampling. Pemeriksaan anti PGL-1 menggunakan ELISA. Hasil penelitian didapatkan terjadi peningkatan kadar IgG anti PGL-1 pada semua sampel. Kesimpulan dari penelitian ini adalah peningkatan kadar IgG anti PGL-1 mengartikan bahwa penghancuran bakteri M. leprae berjalan dengan baik.
                            
                         
                     
                 
                
                            
                    
                        Sentiment Analysis from Indonesian Twitter Data Using Support Vector Machine And Query Expansion Ranking 
                    
                    Hasbi Atsqalani; 
Nur Hayatin; 
Christian Sri Kusuma Aditya                    
                     JOIN (Jurnal Online Informatika) Vol 7 No 1 (2022) 
                    
                    Publisher : Department of Informatics, UIN Sunan Gunung Djati Bandung 
                    
                         Show Abstract
                        | 
                             Download Original
                        
                        | 
                            
                                Original Source
                            
                        
                        | 
                            
                                Check in Google Scholar
                            
                        
                                                                                    
                            | 
                                DOI: 10.15575/join.v7i1.669                            
                                            
                    
                        
                            
                            
                                
Sentiment analysis is a computational study of a sentiment opinion and an overflow of feelings expressed in textual form. Twitter has become a popular social network among Indonesians. As a public figure running for president of Indonesia, public opinion is very important to see and consider the popularity of a presidential candidate. Media has become one of the important tools used to increase electability. However, it is not easy to analyze sentiments from tweets on Twitter apps, because it contains unstructured text, especially Indonesian text. The purpose of this research is to classify Indonesian twitter data into positive and negative sentiments polarity using Support Vector Machine and Query Expansion Ranking so that the information contained therein can be extracted and from the observed data can provide useful information for those in need. Several stages in the research include Crawling Data, Data Preprocessing, Term Frequency – Inverse Document Frequency (TF-IDF), Feature Selection Query Expansion Ranking, and data classification using the Support Vector Machine (SVM) method. To find out the performance of this classification process, it will be entered into a configuration matrix. By using a discussion matrix, the results show that calcification using the proposed reached accuracy and F-measure score in 77% and 68% respectively.
                            
                         
                     
                 
                
                            
                    
                        Klasifikasi Teks Berbasis Ontologi Untuk Dokumen Tugas Akhir Berbahasa Indonesia 
                    
                    Ayu Puji Lestari; 
Maskur Maskur; 
Nur Hayatin                    
                     Jurnal Repositor Vol 1 No 2 (2019): Desember 2019 
                    
                    Publisher : Universitas Muhammadiyah Malang 
                    
                         Show Abstract
                        | 
                             Download Original
                        
                        | 
                            
                                Original Source
                            
                        
                        | 
                            
                                Check in Google Scholar
                            
                        
                                                                                    
                            | 
                                DOI: 10.22219/repositor.v1i2.23                            
                                            
                    
                        
                            
                            
                                
Pada penelitian ini, dilakukan klasifikasi dokumen Tugas Akhir di Teknik Informatika UMM. Permasalahan yang dihadapi adalah sulitnya untuk mencari informasi yang relevan dan sulitnya melakukan pengkategorian dokumen TA sesuai bidang minat jika harus dilakukan secara manual. Tujuan penelitian ini adalah mendapatkan informasi berdasarkan abstrak TA sesuai kategori dan mempermudah dalam melakukan klasifikasi dokumen TA sesuai bidang minat yang ada. Kategori yang digunakan merupakan bidang minat pada program studi yaitu RPL, Jaringan Komputer, Game Cerdas dan Data Science. Data yang digunakan dokumen TA sebanyak 500 data. Tahap yang dilakukan adalah membangun dan memodelkan rule ontologi sesuai data yang diperoleh dengan acuan data kurikulum Teknik Informatika UMM 2017 yang bersumber pada Association for Computing Machinery (ACM) IEEE Computer Society. Ontologi bertujuan untuk mengklasifikasikan objek-objek yang ada di dalam kumpulannya tanpa memerlukan data latih. Untuk mendukung proses klasifikasi digunakan metode dao. Metode dao digunakan untuk menghitung kemiripan diantara dokumen dari sebuah node yang ada di ontologi dengan melihat jarak terdekat. Tahap pengujian sistem menggunakan akurasi diperoleh hasil sebesar 87%. Hal ini menunjukan bahwa ontologi mampu mengklasifikasikan dokumen tanpa menggunakan data latih.