Claim Missing Document
Check
Articles

Found 6 Documents
Search
Journal : Indonesian Journal of Statistics and Its Applications

IDENTIFIKASI KARAKTERISTIK ANAK PUTUS SEKOLAH DI JAWA BARAT DENGAN REGRESI LOGISTIK Tina Aris Perhati; . Indahwati; Budi Susetyo
Indonesian Journal of Statistics and Applications Vol 1 No 1 (2017)
Publisher : Departemen Statistika, IPB University dengan Forum Perguruan Tinggi Statistika (FORSTAT)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29244/ijsa.v1i1.51

Abstract

School dropouts are the problem in education which is the condition of children who do not have the opportunity to complete their education that they couldnt obtain degree certificate due to certain factors. Based on SUSENAS 2013, there is 2.15% of children aged 7-15 years old in West Java who dropped out of school. Three aspects that have great potential on the incidence of school dropouts are characteristic of social, economy, and demography. This study uses logistic regression analysis to determine the effect of school dropouts by the three aspects. The results of logistic regression analysis at 5% significance level indicates that the characteristics of social, economy, and demography that have significant effect on the incidence of school dropouts are the low education of household head, more than four household members, less than the poverty line household expenditure per capita, residence location in urban areas, and boys. The resulting model is sufficientfor estimation with the sensitivity value of 70.20% and the area under the ROC curve of 76.42%. Keywords: logistic regression, ROC curve, school children, sensitivity.
COMPARISON OF K-MEANS CLUSTERING METHOD AND K-MEDOIDS ON TWITTER DATA Cahyani Oktarina; Khairil Anwar Notodiputro; Indahwati Indahwati
Indonesian Journal of Statistics and Applications Vol 4 No 1 (2020)
Publisher : Departemen Statistika, IPB University dengan Forum Perguruan Tinggi Statistika (FORSTAT)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29244/ijsa.v4i1.599

Abstract

The presidential election is one of the political events that occur in Indonesia once in five years. Public satisfaction and dissatisfaction with political issues have led to an increase in the number of political opinion tweets. The purpose of this study is to examine the performance of the k-means and k-medoids method in the Twitter data and to tweet about the presidential election in 2019. The data used in this study are primary data taken from Muhyi's research, then mining the text against data obtained. Because this data has been processed by Muhyi to analyze the electability of the 2019 presidential candidate pairs, for this journal needs a preprocessing was carried out to analyze the tendency of tweets to side with the candidate pairs of one or two. The difference in the pre-processing of this research with previous research is that there is a cleaning of duplicate data and normalizing. The results of this study indicate that the optimal number of clusters resulting from the k-means method and the k-medoid method are different.
EVALUASI KINERJA METODE CLUSTER ENSEMBLE DAN LATENT CLASS CLUSTERING PADA PEUBAH CAMPURAN Debora Chrisinta; I Made Sumertajaya; Indahwati Indahwati
Indonesian Journal of Statistics and Applications Vol 4 No 3 (2020)
Publisher : Departemen Statistika, IPB University dengan Forum Perguruan Tinggi Statistika (FORSTAT)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29244/ijsa.v4i3.630

Abstract

Most of the traditional clustering algorithms are designed to focus either on numeric data or on categorical data. The collected data in the real-world often contain both numeric and categorical attributes. It is difficult for applying traditional clustering algorithms directly to these kinds of data. So, the paper aims to show the best method based on the cluster ensemble and latent class clustering approach for mixed data. Cluster ensemble is a method to combine different clustering results from two sub-datasets: the categorical and numerical variables. Then, clustering algorithms are designed for numerical and categorical datasets that are employed to produce corresponding clusters. On the other side, latent class clustering is a model-based clustering used for any type of data. The numbers of clusters base on the estimation of the probability model used. The best clustering method recommends LCC, which provides higher accuracy and the smallest standard deviation ratio. However, both LCC and cluster ensemble methods produce evaluation values that are not much different as the application method used potential village data in Bengkulu Province for clustering.
KAJIAN SIMULASI OVERDISPERSI PADA REGRESI POISSON DAN BINOMIAL NEGATIF TERBOBOTI GEOGRAFIS UNTUK DATA BALITA GIZI BURUK Puput Cahya Ambarwati; Indahwati Indahwati; Muhammad Nur Aidi
Indonesian Journal of Statistics and Applications Vol 4 No 3 (2020)
Publisher : Departemen Statistika, IPB University dengan Forum Perguruan Tinggi Statistika (FORSTAT)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29244/ijsa.v4i3.684

Abstract

One type of geographically weighted regression (GWR) that can be used to explain the relationship between the response variables in the form of count data and explanatory variables is the geographically weighted Poisson regression (GWPR). In the GWPR, there is an assumption that should be fulfilled called equidispersion, a condition where the variance equals the mean. If that condition is ignored, overdispersion will occur. Overdispersion is a condition when the variance is greater than the mean. The use of GWPR analysis in an overdispersion situation will produce a smaller standard error than it should be (underestimate). This may produce a significant test result leading to the rejection of the null hypothesis. One of the classic approaches commonly used to handle overdispersion in GWR is geographically weighted negative binomial regression (GWNBR). GWNBR is derived from a mixture of Poisson and Gamma distributions which is similar to the negative binomial distribution. Simulation data and real data were used in this study. The results showed that the application of GWPR on overdispersion data could increase the number of rejections of H0 or the number of p-values. The application of GWNBR on the East Java malnutrition toddler data in 2017 showed that the GWNBR model is better than GWPR based on the comparison of AIC, Pseudo R2, and RMSE.
Comparison of Functional Regression and Functional Principal Component Regression for Estimating Non-Invasive Blood Glucose Level: Perbandingan Metode Regresi Fungsional dan Regresi Komponen Utama Fungsional untuk Menduga Kadar Glukosa Darah pada Alat Non-Invasif Nurul Fadhilah; Erfiani Erfiani; Indahwati Indahwati
Indonesian Journal of Statistics and Applications Vol 5 No 1 (2021)
Publisher : Departemen Statistika, IPB University dengan Forum Perguruan Tinggi Statistika (FORSTAT)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29244/ijsa.v5i1p14-25

Abstract

The calibration method is an alternative method that can be used to analyze the relationship between invasive and non-invasive blood glucose levels. Calibration modeling generally has a large dimension and contains multicolinearities because usually in functional data the number of independent variables (p) is greater than the number of observations (p>n). Both problems can be overcome using Functional Regression (FR) and Functional Principal Component Regression (FPCR). FPCR is based on Principal Component Analysis (PCA). In FPCR, the data is transformed using a polynomial basis before data reduction. This research tried to model the equations of spectral calibration of voltage value excreted by non-invasive blood glucose level monitoring devices to predict blood glucose using FR and FPCR. This study aimed to determine the best calibration model for measuring non-invasive blood glucose levels with the FR and FPCR. The results of this research showed that the FR model had a bigger coefficient determination (R2) value and lower Root Mean Square Error (RMSE) and Root Mean Square Error Prediction (RMSEP) value than the FPCR model, which was 12.9%, 5.417, and 5.727 respectively. Overall, the calibration modeling with the FR model is the best model for estimate blood glucose level compared to the FPCR model.
Simulation Study of Robust Geographically Weighted Empirical Best Linear Unbiased Predictor on Small Area Estimation: Simulasi Metode Prediksi Tak Bias Linier Terbaik Empiris Terboboti Geografis Kekar pada Pendugaan Area Kecil Naima Rakhsyanda; Kusman Sadik; Indahwati Indahwati
Indonesian Journal of Statistics and Applications Vol 5 No 1 (2021)
Publisher : Departemen Statistika, IPB University dengan Forum Perguruan Tinggi Statistika (FORSTAT)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29244/ijsa.v5i1p50-60

Abstract

Small area estimation can be used to predict the population parameter with small sample sizes. For some cases, the population units that are close spatially may be more related than units that are further apart. The use of spatial information like geographic coordinates are studied in this research. Outlier contaminations can affect small area estimations. This study was conducted using simulation methods on generated data with six scenarios. The scenarios are the combination of spatial effects (spatial stationary and spatial non-stationary) with outlier contamination (no outlier, symmetric outliers, and non-symmetric outliers). The purpose of this study was to compare the geographically weighted empirical best linear unbiased predictor (GWEBLUP) and robust GWEBLUP (RGWEBLUP) with direct estimator, EBLUP, and REBLUP using simulation data. The performance of the predictors is evaluated using relative root mean squared error (RRMSE). The simulation results showed that geographically weighted predictors have the smallest RRMSE values for scenarios with spatial non-stationary, therefore offer a better prediction. For scenarios with outliers, robust predictors with smaller RRMSE values offer more efficiency than non-robust predictors.
Co-Authors A. A., Muftih Aditya Ramadhan Agus Mohamad Soleh Agustini , Ni Ketut Yulia Agustini, Ni Ketut Yulia Aji Hamim Wigena Akbar Rizki Aliu, Mufthi Alwi ALIU, MUFTIH ALWI Amelia, Reni Amin, Yudi Fathul Anang Kurnia Anik Djuraidah Antonius Benny Setyawan Ari Handayani Arie Anggreyani Aristawidya, Rafika Assyifa Lala Pratiwi Hamid Aunuddin . Bagus Sartono Budi Susetyo Cahyani Oktarina Chrisinta, Debora Daswati, Oktaviyani Dea Fisyahri Akhilah Putri Dian Kusumaningrum Erfiani Erfiani Erfiani Erfiani Erfiani Etis Sunandi Farit Mochamad Afendi Farit Mohamad Afendi Fatimah Fatimah Fira Nurahmah Al Aminy Fitrianto, Anwar Fulazzaky, Tahira Ghina Fauziah Hanifa Izzati Hari Wijayanto Harismahyanti A., Andi Hasanah, Lailatul I Gusti Putu Purnaba I Made Sumertajaya Iin Maena Indah, Yunna Mentari Irawan Irawan Jaya, Eddy Santosa Julianti, Elisa D Kamil, Farid Ikram Karunia, Nia Khairil Anwar Notodiputro Khikmah, Khusnia Nurul Kholidiah, Kholidiah Khusnia Nurul Khikmah Kusman Sadik Latifah, Leli Lestari, Nila Lili Puspita Rahayu Miranti, Ita Miranti, Ita Mohammad Masjkur Mualifah, Laily Nissa Mualifah, Laily Nissa Atul Muhammad Nur Aidi Naima Rakhsyanda Narindria, Yasmin Nadhiva Nurul Fadhilah Panjaitan, Intan Juliana Puput Cahya Ambarwati Putra, Stefanus Morgan Setyadi Perdana Putri, Christiana Anggraeni Ramdani, Indri Rasyid, Baharun Ray Sastri Regan, Regan Reni Amelia Reni Amelia Reza, Charolina Therezia Rifki Hamdani Rindy Anggun Pertiwi Salvina Salvina Silmi Annisa Rizki Manaf Siti Hafsah Siwi Haryu Pramesti Tahira Fulazzaky Tina Aris Perhati Titin Agustina Titin Suhartini Titin Suhartini, Titin Utami Dyah Syafitri Vera Maya Santi Vitona, Desi Wahyudi Setyo Yenni Angraini Yuniarty, Titin Zulkarnain, Rizky _ Aunuddin