Claim Missing Document
Check
Articles

Found 36 Documents
Search

Analisis sikap konsumen atas kreatfitas iklan, daya tarik iklan dan kualitas pesan iklan pada handphone merek Sony Xperia Z di kota Pekanbaru Suryanto Primanaldi; Zulkarnain '; Marhadi '
Jurnal Online Mahasiswa (JOM) Bidang Ilmu Ekonomi Vol 1, No 2 (2014): wisuda oktober 2014
Publisher : Jurnal Online Mahasiswa (JOM) Bidang Ilmu Ekonomi

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

This study aims to look at consumer attitudes on advertising creativity, attraction advertising and quality of the advertising message on Sony Xperia Z in Pekanbaru city. The population in this study are the people who use and watch Sony Xperia Z’s ad in Pekanbaru city. While the sample in this study using purposive sampling method with criteria people who live in Pekanbaru city with the age of 15-30 years who using and watching Sony Xperia Z’s ad. The data obtained will be processed by Fishbein analysis. After the test, the results is consumer attitudes toward advertising creativity is very good, this is evidenced by the performance of advertising creativity has reached what is perceived by the respondents. Consumer attitudes toward attraction advertising is very good, this is evidenced by the performance of the attraction of advertising has reached what is perceived by the respondents. And consumer attitudes toward quality of the advertising message is also very good, this is evidenced by the performance of quality of the advertising message has reached from what is perceived by the respondents.Keywords: advertising creativity, attractiveness and quality of advertising message.
PERLUASAN METODE INTEGRASI HASIL-KALI BERTIPE TRAPESIUM Eko Budiansyah; Supriadi Putra; Zulkarnain '
Jurnal Online Mahasiswa (JOM) Bidang Matematika dan Ilmu Pengetahuan Alam Vol 2, No 1 (2015): Wisuda Februari 2015
Publisher : Jurnal Online Mahasiswa (JOM) Bidang Matematika dan Ilmu Pengetahuan Alam

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

This article discusses the extension of the pro duct integration rules which is a modification of the generalized Euler-Maclaurin summation formula using a partition of the trap ezoidal metho d. Analytically, it is showed that this metho d has an error of O(1/n 2). Furthermore, computational results show that the method is superior to the comparison methods by looking into the error value obtained.
NOISE TERMS PADA SOLUSI DERET DEKOMPOSISI ADOMIAN DALAM MENYELESAIKAN PERSAMAAN DIFERENSIAL PARSIAL Heni Kusnani; Leli Deswita; Zulkarnain '
Jurnal Online Mahasiswa (JOM) Bidang Matematika dan Ilmu Pengetahuan Alam Vol 2, No 1 (2015): Wisuda Februari 2015
Publisher : Jurnal Online Mahasiswa (JOM) Bidang Matematika dan Ilmu Pengetahuan Alam

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

This article discusses the solution of nonhomogeneous linear partial differential equa-tions of first order and homogeneous nonlinear partial differential equations of second order using Adomian decomposition method. The obtained solution is of the form series. In the series solution of nonhomogeneous linear partial differential equations of the first order appears noise terms phenomenon, which is the same terms but with opposite sign, so that the solution obtained is a finite series.
FAMILI METODE ITERASI BERORDE TIGA UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR Dewi Kusuma; Imran M.; Zulkarnain '
Jurnal Online Mahasiswa (JOM) Bidang Matematika dan Ilmu Pengetahuan Alam Vol 2, No 1 (2015): Wisuda Februari 2015
Publisher : Jurnal Online Mahasiswa (JOM) Bidang Matematika dan Ilmu Pengetahuan Alam

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

We discuss a family of iterative methods derived by giving a weight function recur-sively to the corrector of Newton’s method, which is a review of article of Herceg and Herceg publised on [Applied Mathematics and Computation, 87 (2010), 2533–2541]. Weighting with a specific index produces Super-Halley’s method. Analytically it is shown that the order of the convergence of the method is three. Furthermore, this iteration method requires four function evaluations per iteration, so its efficiency index is 1.316. Then, computational tests show that the discussed method is better than Newton’s method, and does not have significant differences with Super Halley’s method in terms of error produced.
METODE MODIFIKASI NEWTON √ DENGAN ORDE KONVERGENSI 1 + 2 Lely Jusnita; Supriadi Putra; Zulkarnain '
Jurnal Online Mahasiswa (JOM) Bidang Matematika dan Ilmu Pengetahuan Alam Vol 2, No 1 (2015): Wisuda Februari 2015
Publisher : Jurnal Online Mahasiswa (JOM) Bidang Matematika dan Ilmu Pengetahuan Alam

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

We discuss the modification of Newton’s method, which is a Predictor and Corrector method, to solve a nonlinear equation. Using a series based on the equation √ error of the method, we show that the order of convergence of the method is 1 + 2 and for each iteration, it requires two function evaluations, so the efficiency index of the method is 2.4142. To see the advantages of the proposed method, we compare the method with some known iterative methods using four test functions by varying an initial guess.
ANALISIS KEKONVERGENAN GLOBAL METODE ITERASI CHEBYSHEV Poppy Hanggreny; M. Imran; Zulkarnain '
Jurnal Online Mahasiswa (JOM) Bidang Matematika dan Ilmu Pengetahuan Alam Vol 1, No 2 (2014): Wisuda Oktober 2014
Publisher : Jurnal Online Mahasiswa (JOM) Bidang Matematika dan Ilmu Pengetahuan Alam

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

This article discusses the analysis of the global convergence of Chebyshev method through the geometric interpretation of how to derive its formula using the parabolic equation. The results of the analysis are posed in the theorems, which state hypotheses criteria when the Chebyshev method converges globally for any initial guess at some intervals. For comparison, the hypotheses criteria when the Euler method and Halley iteration convergen globally are also discussed. In comparing these methods through the computations, we look into the fulfillment of the hypotheses criteria of the theorems for each method and the number of iterations required to obtain the estimated roots.
MODIFIKASI FAMILI METODE ITERASI MULTI-POINT UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR Yolla Sarwenda; Imran M.; Zulkarnain '
Jurnal Online Mahasiswa (JOM) Bidang Matematika dan Ilmu Pengetahuan Alam Vol 2, No 1 (2015): Wisuda Februari 2015
Publisher : Jurnal Online Mahasiswa (JOM) Bidang Matematika dan Ilmu Pengetahuan Alam

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

This article discusses a modified family of multi-p oint iterative method, which is free from second derivative, obtained by mo difying the Chebyshev-Halley-type method. Analytically using Taylor expansion and geometric series, we show that the method has convergence order of three and four. Further by varying the value of the parameter in the formula, we obtain some third order iterative metho ds free secondderivative. Then using some test functions, the prop osed metho d is compared with several known multi-p oint iterative metho ds of order three and four.
FORMULASI UMUM METODE ITERASI DENGAN ORDE KONVERGENSI ENAM Dewi Khairati Putri; M. Imran; Zulkarnain '
Jurnal Online Mahasiswa (JOM) Bidang Matematika dan Ilmu Pengetahuan Alam Vol 1, No 2 (2014): Wisuda Oktober 2014
Publisher : Jurnal Online Mahasiswa (JOM) Bidang Matematika dan Ilmu Pengetahuan Alam

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

This article discusses the General Formulation of Iterative Method, which requires three function evaluations and one derivative function evaluation. Analytically it is showed, using the Taylor expansion and geometric series, that the General Formulation of Iterative Method has a convergence of order six. Furthermore, by choosing the values of certain parameters in the General Formulation of Iterative Method, several well-known iterative methods, which have three function evaluations and one derivative function evaluation, are obtained. Comparison between the proposed method and well-known methods are done by looking at the number of iterations and number of function evaluation. In addition, comparisons are also made through Basins of Attraction of the methods discussed.
METODE ITERASI BARU BEBAS DERIVATIF UNTUK MENEMUKAN SOLUSI PERSAMAAN NONLINEAR Eka Ceria; Agusni '; Zulkarnain '
Jurnal Online Mahasiswa (JOM) Bidang Matematika dan Ilmu Pengetahuan Alam Vol 1, No 2 (2014): Wisuda Oktober 2014
Publisher : Jurnal Online Mahasiswa (JOM) Bidang Matematika dan Ilmu Pengetahuan Alam

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

This article discusses a new derivative-free iterative method to find the solutions of nonlinear equations. Analytically it is shown that the order of convergence of the method is two. The advantage of this iterative method is that it can be used to obtain real roots and complex roots. In terms of this ability, the method is equivalentto Muller’s method. Numerical tests show that the iterative method is superior and efficient in terms of the number of iterations required to obtain a root.
TEKNIK ITERASI VARIASIONAL UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR Koko Saputra; Supriadi Putra; Zulkarnain '
Jurnal Online Mahasiswa (JOM) Bidang Matematika dan Ilmu Pengetahuan Alam Vol 1, No 2 (2014): Wisuda Oktober 2014
Publisher : Jurnal Online Mahasiswa (JOM) Bidang Matematika dan Ilmu Pengetahuan Alam

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

This article discusses the variational iteration technique to solve nonlinear equations. This iterative technique is obtained by estimating the second derivative that appears in the variational iteration method. Then by choosing certain functions in the form of exponents, three iterative methods of order three are found. Because the three methods require two evaluations of the function and one evaluation of the derivative function, then the eciency index of the three methods that have been suggested is 1:442, greater than the eciency index of Newton's method that is 1; 414.