Claim Missing Document
Check
Articles

Found 21 Documents
Search

Perkuatan Pelat Jembatan Dek Baja dengan Overlay Beton Bertulang Sukrawa, Made; Sudarsana, I K.; Dana, I Wayan
Jurnal Teknik Sipil Vol 18, No 3 (2011)
Publisher : Institut Teknologi Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1228.119 KB)

Abstract

Abstrak. Penelitian tentang metode perkuatan pelat jembatan komposit dek baja bergelombang (CSD) telah dilakukan dengan mempertebal pelat menggunakan overlay beton bertulang. Pengujian Laboratorium dalam skala 1:2 dilakukan dengan membuat dan menguji 12 komponen pelat komposit tebal 95 mm, lebar 500 mm dan panjang 2 kali 700 mm berupa pelat menerus satu arah. Tiga pelat kontrol dan 9 pelat dengan perkuatan diuji sampai runtuh, delapan pelat diberikan pembebanan awal sampai terjadi retak awal pada daerah tumpuan tengah untuk menirukan pelat yang sudah retak. Analisis dengan model elemen hingga (MEH) menggunakan program LUSAS v 13.57 juga dilakukan sebagai perbandingan. Perilaku lentur pelat akibat dua beban garis diamati dalam bentuk grafik beban-lendutan pada umur beton overlay 3, 7 dan 28 hari, dengan bahan accelerator pada beton overlay. Hasil pengujian menunjukkan bahwa kekuatan dan kekakuan lentur pelat dengan overlay beton meningkat secara meyakinkan dengan nilai masing-masing 45% dan 100% pada umur overlay 3 hari. Pada umur overlay 3 dan 7 hari kekuatan pelat komposit hampir mencapai kekuatan pelat pada umur 28 hari. Model Elemen Hingga memberikan kekuatan dan kekakuan pelat yang lebih besar dari hasil pengujian laboratorium, namun perilaku kedua pelat mirip, dimana, pada pembebanan yang lebih tinggi kekakuan pelat menurun. Abstract. Research on strengthening method of bridge deck with corrugated steel deck by increasing its thickness using reinforced concrete overlay was conducted by casting and testing 12 slab specimens with total thickness of 95 mm, width 500 mm and length 2 times 700 mm, which is a 1:2 scale of continuous one way slab. Three control slabs and 9 strengthened slabs were tested until failure, 8 slabs were preloaded until initial crack occurs on the middle support region to simulate cracked deck. Finite element model (FEM) using LUSAS v 13.57 was also done as comparison. Slab behavior under two strip loadings was recorded as load-deformation graph at concrete overlay age of 3, 7, and 28 days, with accelerator in concrete overlay. Test result showed that the strength and stiffness of deck with concrete overlay improved by 45% and 100%, respectively, at concrete overlay age of 3 days. Interestingly enough, at the overlay age of 3 and 7 days, the strength of composite slab almost reach its 28 days strength. Finite Element Model showed that the deck strength and stiffness are larger than those of the test results, however, their behavior is similar in which, at higher load level, the stiffness of the slab reduce noticeably.
Kinerja Struktur Rangka Beton Bertulang dengan Penambahan Dinding Pengisi Berlubang sebagai Perkuatan Seismik Budiwati, Ida Ayu Made; Sukrawa, Made
Jurnal Teknik Sipil Vol 24, No 1 (2017)
Publisher : Institut Teknologi Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (2056.98 KB) | DOI: 10.5614/jts.2017.24.1.6

Abstract

AbstrakPenelitian ini dilakukan guna memperoleh model struktur rangka beton bertulang dengan dinding pengisi (RDP) berlubang, dengan dan tanpa perkuatan di sekitar lubang (lintel), sebagai perkuatan seismik, dengan membandingkan perilaku dan kinerja struktur RDP dengan berbagai rasio lubang. Pada tahap awal dilakukan validasi model dengan membandingkan perilaku struktur yang dimodel menggunakan elemen shell (RDPsh) dan strut diagonal (RDPst) dengan hasil uji laboratorium yang telah dilakukan oleh peneliti lain. Model validasi menunjukkan bahwa RDPsh menghasilkan diagram beban simpangan lateral yang lebih mendekati hasil tes dibandingkan dengan RDPst. Disamping itu, persamaan lebar strut untuk dinding berlubang tanpa lintel tidak bisa digunakan untuk dinding berlubang dengan lintel karena lintel menambah kekakuan rangka, memperkuat dinding di sekitar lubang dan mengurangi tegangan maksimum pada sudut lubang sampai 40%. Lebar strut diagonal kemudian dimodifikasi untuk mendapatkan model yang menghasilkan respon sesuai dengan RDPsh. Kemudian model rangka beton bertulang 3, 4, dan 5 lantai dengan dinding pengisi berlubang sentris dengan lintel di sekeliling lubang dibuat dengan variasi rasio lubang 0 – 100%. Hasil analisis pada RDP 3 lantai menunjukkan bahwa, terjadi pengurangan simpangan lateral masing-masing sebesar 65%, 58%, 43%, 22%, dan 5% untuk rasio lubang 0%, 20%, 40%, 60%, dan 80%. Persentase pengurangan yang hampir sama juga terjadi pada rangka 4 dan 5 lantai. Untuk rangka 3-lantai, penambahan dinding pengisi dengan rasio lubang terbesar 60% cukup memadai untuk menahan beban gempa yang disyaratkan SNI 1726:2012. Tetapi, untuk rangka 4 dan 5 lantai, diperlukan dinding dengan rasio lubang maksimum 40%. Penambahan dinding pengisi meningkatkan kemampuan struktur dalam menahan gaya geser dasar akibat gempa. Namun demikian, peningkatan kekuatan ini disertai dengan penurunan daktilitas struktur seiring dengan menurunnya rasio lubang.AbstractThis research was conducted to develop a model of seismic retrofitting of reinforced concrete frame using infill wall with central openings, with and without lintels around the opening, by comparing the behaviour and performance of the frame structures with varying opening ratios. Prior to model the strengthened frames, validation was done by comparing the behaviour of computer models using shell element (RDPsh) and diagonal strut (RDPst) to those of laboratory tests conducted by others. The validation models show that the lateral load-displacement diagrams of RDPsh fit the test result better than the strut ones. It was also found that the strut width equation for opening without lintel can not be used for opening with lintels as the lintels stiffen the frame and strengthen the wall around the openings. Based on these results, the width of strut was modified to match the response of model using shell element with lintels around the opening. The RC frames of 3, 4, and 5 storey retrofitted using infill wall with central opening ratio varies from 0 to 100%, was then conducted by modeling the infill wall as an equivalent diagonal strut and shell elements in SAP2000 software. The analysis results of 3-storey frames show that, reduction on lateral drifts of 65%, 58%, 43%, 22%, and 5% was observed for opening ratio of 0%, 20%, 40%, 60%, dan 80%, respectively. Similar results were also found for the 4 and 5 storey frames. From the reinforcement requirements it can be concluded that the strengthening method can be applied with limitation on the wall opening ratios. For 3- storey frames, the addition of infill wall with opening ratio up to 60% is adequate to withstand the quake load specified in the SNI 1726:2012. For 4 and 5-storey frames however, opening ratio of 40% or less is required. Interestingly, the addition of infill wall with lintels can withstand higher base shear forces. However, the increased strength is followed by a decreased ductility in line with decreasing opening ratio.
PEMODELAN STRUKTUR RUMAH SUSUN DENGAN DAN TANPA DINDING PENGISI Widyastana, IGD Adi; Sukrawa, Made; Sudarsana, I Wayan
Jurnal Ilmiah Elektronik Infrastruktur Teknik Sipil Volume 2, No. 1, Februari 2013
Publisher : Jurnal Ilmiah Elektronik Infrastruktur Teknik Sipil

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (427.935 KB)

Abstract

Abstrak : Rumah susun sebagai alternatif dalam pemenuhan akan kebutuhan rumah pada daerah dengan lahan terbatas memiliki dinding permanen sebagai pemisah antar rumah, sehingga dindingnya dapat diperhitungkan sebagai komponen struktur. Untuk membandingkan hasil analisis dibuat 4 Model struktur, yaitu Model I adalah struktur tanpa dinding pengisi (OF), Model II, Model IIA dan Model IIB adalah struktur dengan pemodelan dinding pengisi sebagai strut diagonal ekivalen (SD), dimana pada Model II (SD) dimensi struktur sama dengan Model I (OF) dan pada Model IIA (SD-ER) dimensi struktur dibuat sesuai kebutuhan tulangan supaya ?min < ? < ?maks, sedangkan pada Model IIB (SD-EL) dimensi struktur sama dengan Model IIA tetapi dengan arah beban gempa yang berlawanan. Kuat tekan dinding pengisi (fm) diambil 15 Mpa dengan modulus elastisitas (Em) sebesar 7000 Mpa. Tegangan pada dinding juga dihitung menggunakan pendekatan empiris sehingga didapat 2 macam pendekatan. Berdasarkan hasil analisis yang dilakukan dengan SAP2000.versi 11 diperoleh bahwa deformasi struktur pada Model I (OF) rata – rata 56% lebih besar dibandingkan dengan deformasi struktur pada Model II, Model IIA dan Model IIB. Tegangan pada dinding pengisi masih dalam batas – batas kekuatan bahan dinding yakni sebesar 88% untuk tegangan geser, 90% untuk tegangan tekan  dan 96% untuk tegangan tarik. Berdasarkan hasil analisis juga didapat gaya – gaya dalam yang terjadi pada struktur Model I (OF) rata – rata lebih besar yakni untuk momen 63%, gaya geser 58% dan gaya aksial 40% dibandingkan struktur pada Model II, Model IIA dan Model IIB . Selain itu diperoleh kebutuhan tulangan lentur kolom pada Model I lebih besar yakni 53% dari Model II, 19% lebih besar dari Model IIA, dan 61% lebih besar dari Model IIB. Sedangkan kebutuhan luas tulangan lentur balok pada Model I baik portal arah x maupun portal arah y rata – rata 58 % lebih besar dibandingakan balok pada Model II, Model IIA dan Model IIB.Abstract: Condominium as an alternative to overcome the needs of houses in a limited area has a permanent wall to separate between houses, so that the walls can be considered as a structural component. To compare the results of the analysis ??4 models structure were developed. Model I is a structure without infill wall (OF), Model II, Model IIA and IIB are infill frame where the wall is modeled as equivalent diagonal strut (SD). In Model II (SD) the dimensions of structure are made the same as these of Model I (OF) and in Model IIA (SD-ER) the dimensions of structures are made ??as required to satisfy reinforcement of ?min <? <?maks, whereas in Model IIB (SD-EL) the dimensions of structures are the same as IIA model but with opposite direction of the earthquake load. The compressive strength of infill wall (fm) is 15 MPa with a modulus of elasticity (Em) of 7000 MPa. The stress on the infill wall is also checked using an empirical approach beside analysis result. According to analysis done using SAP2000.versi 11 it is found that the deformation of the Model I (OF) is in average 56% larger than the deformation of Model II, Model IIA and IIB. The stresses on the infill wall are still within limits that the wall stresses to strength ratio are 88% for shear stress, 90% for compressive stress and 96% for tensile stress. From analysis results also obtained that the structure of Model I (OF) produces average reaction forces 63% greater for moment, 58% for shear force and 40% for axial force compared to the structure of the Model II, IIA and IIB. Additionally reinforcement of column model I is 53% more than that of Model II, 19% more than that of Model IIA, and 61% more than that of model IIB. Flexural reinforcement for beam for Model I in both direction (x and y) are in average 58% more than that for Model II, Model IIA and IIB.
ANALISIS PERILAKU THREE-SIDED ARCH SEBAGAI ALTERNATIF DARI BOX CULVERT Ida Bagus Prastha Bhisama; Made Sukrawa; Ida Ayu Made Budiwati
JURNAL SPEKTRAN Vol 9 No 1 (2021)
Publisher : Master of Civil Engineering Program Study, Faculty of Engineering, Udayana University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24843/SPEKTRAN.2021.v09.i01.p02

Abstract

Penelitian ini dilakukan untuk mengetahui perilaku dari struktur three-sided arch (TSA) yang merupakan salah satu alternatif dari struktur box culvert (BC). Perilaku kedua struktur dibandingkan melalui pemodelan elemen hingga pada program SAP2000. Pemodelan model validasi merupakan tahap awal dalam penelitian ini, yang dibuat berdasarkan pada hasil uji laboratorium oleh peneliti lain. Hasil pemodelan validasi menunjukkan bahwa pemodelan dengan elemen frame (MFR) dan shell (MSH) lebih mendekati hasil uji laboratorium, sedangkan elemen solid (MSO) jauh berbeda sehingga tidak digunakan dalam model aplikasi. Setelah metode pemodelan valid, selanjutnya dilakukan pemodelan aplikasi BC dan TSA yang memiliki panjang bentang bervariasi. Model aplikasi yang dibuat meliputi BC dan TSA dengan bentang 4 m (BC4 dan TSA4), 5 m (BC5 dan TSA5), 7 m (BC7 dan TSA7), 9 m (BC9 dan TSA9) dan 11 m (BC11 dan TSA11) dengan tebal pelat atas 400 mm pada model BC dan 300 mm pada TSA. Deformasi kedua model dianalisis secara non-linier menggunakan pembebanan bertahap, variasi modulus elastisitas (E) dan momen inersia penampang retak (Icr). Untuk mengetahui gaya-gaya dalam lainnya, kedua model dianalisis secara linier dengan beban lalu lintas sesuai SNI 1725:2016. Berdasarkan hasil analisis, perilaku TSA lebih baik dibandingkan BC, dilihat dari deformasi TSA yang mampu menyerupai atau bahkan lebih kecil dari BC meskipun dengan ketebalan pelat atas yang 25% lebih kecil. Pada model dengan variasi bentang, struktur mampu menahan kombinasi pembebanan lajur ‘D’ sampai dengan bentang 7 m. Untuk model bentang 9 dan 11 m, yaitu BC9, TSA9, BC11 dan TSA11 diperlukan penebalan pada pelat atas struktur.
STUDI ANALISIS PENGARUH PROPERTI BETON DAN DINDING PASANGAN TERHADAP PERILAKU RDP BERLUBANG Ida Ayu Made Budiwati; I Ketut Sudarsana; Made Sukrawa; Nanda Dwi Wulan Sari
JURNAL SPEKTRAN Vol 6 No 2 (2018): Vol. 6, No. 2, Juli 2018
Publisher : Master of Civil Engineering Program Study, Faculty of Engineering, Udayana University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (668.08 KB)

Abstract

ABSTRAK Perilaku rangka beton bertulang dengan dinding pengisi berlubang sentris (RDP) dipengaruhi oleh karakteristik material dan geometrinya. Analisis sensitivitas dilakukan pada model RDP menggunakan analisis numerik akibat variasi modulus elastisitas dinding (Em), modulus elastisitas beton (Ec), dan lebar strat diagonal (wds) pada struktur RDP. Balok dan kolom dimodel sebagai elemen frame dan dinding pengisi berlubang dimodel sebagai strat diagonal. Hasil analisis sensitivitas model RDP kemudian dibandingkan dengan hasil eksperimen peneliti lain dan diaplikasikan pada gedung perkantoran 3 lantai. Hasil analisis sensitivitas menunjukkan bahwa nilai modulus elastisitas dinding (Em), modulus elastisitas beton (Ec), dan Inersia balok (Ib) dan inersia kolom (Ik) perlu direduksi setelah 95% beban lateral dikerjakan pada struktur. Nilai reduksi pada beban 95% adalah sebesar 0,6 dan 0,8 masing-masing untuk modulus elastisitas dan inersia. Pada beban 100%, nilai modulus dan inersia dinding pengisi masing-masing direduksi sebesar 0,5 dan 0,7. Lebar strat diagonal (wds) yang digunakan dalam analisis yaitu Persamaan 1. Hasil analisis pada gedung menunjukkan bahwa peningkatan beban dari 95% ke 100% dan reduksi modulus elastisitas serta inersia, mengakibatkan peningkatan simpangan struktur, terjadi penurunan momen lapangan pada balok sebesar 4,74%-11,22%, dan penurunan momen tumpuan pada balok sebesar 12,84%-14,15%. Pada kolom, terjadi penurunan momen sebesar 1,24%-17,94%. Penurunan gaya geser pada balok terjadi sebesar 0,97%-1,63%, sedangkan pada kolom sebesar 1,67%-4,84%, namun terjadi peningkatan gaya aksial pada kolom sebesar 4,03%-5,36%.
PERILAKU TEKAN DAN LENTUR DINDING PASANGAN BATAKO TANPA PLESTERAN, DENGAN PLESTERAN DAN DENGAN PERKUATAN WIREMESH Made Yani Anggreni; I K. Sudarsana; M. Sukrawa
JURNAL SPEKTRAN Vol. 3, No. 2, Juli 2015
Publisher : Master of Civil Engineering Program Study, Faculty of Engineering, Udayana University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (649.012 KB) | DOI: 10.24843/SPEKTRAN.2015.v03.i02.p02

Abstract

Concrete blocks are one of the common materials used in construction practice because they are quite easy to get and the price is relatively cheap. Masonry (either concrete blocks or bricks) is a structure consisting of a binding material (mortar) and a filler material (such as concrete blocks). In general, masonry is very good at resisting gravity loads, but not quite good at resisting shear loads such as loads generated by earthquakes, so it requires reinforcement in the form of plaster and additional wire mesh in the plaster of the masonry. Due to several problems of the masonry frame structure, it is necessary to conduct a research on the quality of the masonry to find out the compressive and flexural behavior of the masonry with reinforcement namely plaster and wire mesh. The method used in this study was laboratory testing by creating specimens of concrete block masonry. Variations of masonry for compressive tests in this study 3 specimens varied based on the orientation namely Type A (Horizontal), Type B (Vertical) and Type C (Diagonal), and 3 specimens varied based on the treatment: masonry without plaster (TP), masonry with plaster (DP), and masonry with wire mesh reinforcement (DPW). Variations of masonry for bending tests perpendicular to the bed joint (LA) and parallel to the bed joint (LB). Based on the results the crack patterns occurring in the specimens were relatively the same, where the initial cracks occurred predominantly in the interface area between the mortar and concrete blocks. The compressive strength of the concrete block masonry with plaster had a higher value than that of with wire mesh reinforcement. This was due to adhesion between the mortar and wire mesh and poor density so the performance of wire mesh was less effective. The concrete block masonry of Type C had the highest modulus of elasticity value. This was because the propagation of cracks that occurred in the masonry of Type C was slowed down by the position of the concrete blocks, which were installed with a slope of 45o. Meanwhile, the propagation of cracks of Type A and Type B occurred vertically in the interface between the mortar and concrete blocks. Flexural strength values ??of specimens that were perpendicular to the bed joint (LTPA, LDPA, and LDPWA) were much higher than that of parallel to the bed joint (LTPB, LDPB and LDPWB). The addition of the wire mesh reinforcement to the compressive load did not contribute much to the stiffness of the masonry. Meanwhile in the bending tests, the addition of wire mesh reinforcement resulted in an increase in the flexural strength values of the concrete block masonry.
RESPON SEISMIK STRUKTUR RANGKA DINDING PENGISI YANG DIMODEL DENGAN ELEMEN SHELL PENUH DAN PARSIAL Putu Ratna Suryantini; M. Sukrawa; I. A. M Budiwati
JURNAL SPEKTRAN Vol 5 No 1 (2017): Vol. 5, No. 1, Januari 2017
Publisher : Master of Civil Engineering Program Study, Faculty of Engineering, Udayana University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (431.096 KB) | DOI: 10.24843/SPEKTRAN.2017.v05.i01.p10

Abstract

Abstract: Research on the seismic response of in-filled frame structure has been done with in-filled frame model as full and partial shell elements. The wall is considered active until the maximum load on the full shell models, while the partial shell model using the gradual load with the strength of the wall is considered inactive if the stress of the wall exceeded the wall strength The 4 storey hotel building with full wall in x-direction and wall with opening in y-direction were modeled in SAP 2000 as 3D infilled-frame using full and partial shell element. In Mxy models, both wall were included in the model, while in My models, only the wall in y-direction included. Therefore, 4 models were obtained, there are full shell model MxyShPn and MyShPn and partial shell model MyShPar and MyShPar. In addition, 2 diagonal strut models MxyS and MyS  and an open frame model MOF were made as comparison. Prior to model 3D structure, validation models were created using test result condited by other as reference. For that purphose 5 2D models were created there are open frame model MOF, single strut model MST, multiple strut model MSG, full shell model MShPn and  partial shell model MShPar. From validation models, it is apparent that the MxyShPar model mimic the behavior of tested structure better than the other models. From the 3D models analysis result show that the displacement in x-direction of MxyShPn, MxyShPar, MxyS were 89%, 85%, 84% smaller than those of MOF, respectively inclusion of wall in the models, also reduce the internal forces and reduse the natural period of the sctructure.
STUDI EKSPERIMEN PELAT BETON BERTULANG PRACETAK SATU ARAH BERPENAMPANG “U” SEBAGAI ALTERNATIF STRUKTUR LANTAI I Nyoman Ardika; I Made Alit Karyawan Salain; I Made Sukrawa
JURNAL SPEKTRAN Vol 7 No 2 (2019): Vol. 7 No. 2, JULI 2019
Publisher : Master of Civil Engineering Program Study, Faculty of Engineering, Udayana University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (524.118 KB)

Abstract

This research is motivated from the thought how to apply advantage-precast method and resolve deficiency conventional method in implementation of construction reinforced concrete slab structures multi-storey building. Therefore conducted preliminary experiments by making structure slab of some elements one way precast reinforced concrete slab. From some preliminary experiments with the problems encountered, finally defined cross-section “U” upside down, with f'c 15 MPa design and 1300 mm long with cross sectional size 320 mm x 150 mm x 40 mm, tensile reinforcement 2Ø5,6987 mm with yield stress of steel 188 MPa. In this research will be reviewed some problems, that is capability slab U to support service load until cracking moment, maximum length U slab to support service load design until cracking moment, and maximum length U slab to support service load design until maximum deflection. These three problems completed by carrying out the load test by using water as a testing load and the physical properties of the material which is used for reinforced concrete. Based on the analysis of test data obtained U slab able to support three times service load design (4,310 N/mm) without cracking, maximum length U slab to support service load design without cracking is 2300 mm, and maximum length U slab to support service load until maximum deflection is 3302,6 mm. Keywords: U-Slab, precast, slab structure
STUDI KARAKTERISTIK BATA MERAH LOKAL BALI SEBAGAI DINDING Ni Nyoman Rita Rahayu; I. A. M Budiwati; M. Sukrawa
JURNAL SPEKTRAN Vol 4 No 1 (2016): Vol. 4, No. 1, Januari 2016
Publisher : Master of Civil Engineering Program Study, Faculty of Engineering, Udayana University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (349.437 KB) | DOI: 10.24843/SPEKTRAN.2016.v04.i01.p02

Abstract

Abstract : This study was conducted to determine the characteristics of brick red walls. Red brick taken from a local brick manufacturer Gianyar, Tabanan and  Negara refer to SNI 15-0686-1989. By using mortar 1: 4, 1: 5, 1: 6, 1: 7 and 1: 8, according to the rules SK SNI M-111-1990-03. Testing red brick wall refers to the standards set in SNI 03-4164-1996. The data measured in this study is the compressive strength, modulus of elasticity and flexural strength. Modulus of elasticity of the wall pair by way of experiment calculated using the equation defined BSEN 1052-1-1999 Brick walls Gianyar, Tabanan of mortar 1: 4 consecutive compressive strength characteristics are 1.22, 1.32 and 1.42 N / mm ². Based on the results obtained in the testing of masonry walls with mortar 1: 4 with the value of the average compressive strength of 11.13 N / mm ² are classified as class mortar (i) according to standard BS 5628-1-1992 characteristic compressive strength for all wall below the chart value pairs are characteristic compressive strength of masonry that is equal to 2.5 N / mm ². Average modulus of elasticity of masonry walls Gianyar of mortar 1: 4, 1: 5, 1: 6, 1: 7 and 1: 8, according to the equation obtained 1052-1-1999 BSEN 240, 191, 171, 156 and 154 N / mm ², masonry walls Tabanan of mortar 1: 7 and 1: 8 obtained elastic modulus of 356 and 344 N / mm ², masonry walls Negara of mortar 1: 7 and 1: 8 obtained elastic modulus of 363 and 348 N / mm ².  When compared three types of masonry is based on the elastic modulus and compressive strength, then the resulting brick wall of Negara has the greatest value for the various types of mortar, followed by a later brick wall brick wall Tabanan, Gianyar. Flexural strength values ??by using the equations listed in SNI 03-4165-1996,  for gianyar masonry walls with mortar 1: 4, 1: 5, 1: 6, respectively are 0.005, 0.004 , 0.004 N/mm2, brick Tabanan 0.009, 0.007, 0.005 0.009 N/mm2 and brick Negara, 0.008, 0.006 N/mm2. Testing by means of BS EN 1052-2-1999 be reviewed only for 1:4 mortar masonry walls flexural strength values ??produced an average of 0.0045 MPa, this value is very close to the value obtained from way SNI 03-4165-1996 is equal to 0.005 MPa.
STUDI PERBANDINGAN PERILAKU DAN KINERJA STRUKTUR BAJA MENGGUNAKAN KOLOM KOMPOSIT CONCRETE ENCASED DAN CONCRETE FILLED TUBE, SERTA NON KOMPOSIT I Ketut Diartama Kubon Tubuh; Made Sukrawa; I Gede Adi Susila
JURNAL SPEKTRAN Vol 5 No 2 (2017): Vol. 5, No. 2, Juli 2017
Publisher : Master of Civil Engineering Program Study, Faculty of Engineering, Udayana University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (516.572 KB)

Abstract

Comparative study of steel structure behavior and performance using composite and non composite columns were done by making five structure models. A model using wide flange steel columns, two models with circular and square concrete encased columns (MCEC and MCES), also two models with circular and square concrete filled tube columns (MCFTC and MCFTS). Columns on 4th-5th floor are smaller than columns on three floors below. Structure behavior were observed through elastic analysis which are displacement and interstory drift. While structure performance were evaluated through non linear static Pushover analysis using SAP2000®. The analysis showed that with P-M ratio ranging from 0.79 until 0.88, all models interstory drifts were exceed limit on 1st, 2nd and 4th floors. Countermeasures were done by rotating half of total MS steel columns (then became MS-R), enlarging 4th-5th floor columns on MS-R and MCFTC, and also installing eight X-bracings on all models ground floor. Pushover analysis showed that performance level of all models are Immediate Occupancy (IO) except MCFTS. MCFTS model which in Collapse (C) performance level were improved by increasing thickness of steel section (then became MCFTS-Improved) and resulting IO performance level. Calculation of structure materials cost showed the most expensive until the cheapest models respectively were MS-R, MCFTS-Improved, MCEC, MCES, and MCFTC with comparison 1:0,99:0,88:0,87:0,86. Keywords: concrete encased (CE), concrete filled tube (CFT), X-bracing, Pushover analysis