Claim Missing Document
Check
Articles

Found 31 Documents
Search

PEMODELAN STRUKTUR RANGKA DINDING PENGISI BERATURAN UNTUK GEDUNG 4, 7 DAN 10 LANTAI DENGAN VARIASI PENEMPATAN DINDING PENGISI PADA LANTAI DASAR P. A. Parmaheni Tirta Sari; M. Sukrawa; I. A. M. Budiwati
JURNAL SPEKTRAN vol 2, No 1, Januari 2014
Publisher : Master of Civil Engineering Program Study, Faculty of Engineering, Udayana University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1155.277 KB) | DOI: 10.24843/SPEKTRAN.2014.v02.i01.p02

Abstract

Research on reinforced concrete structure with and without infill wall has been done by modeling the same structure as open frame (OF) and infilled frame (RDP) to compare in their stiffness, force distribution and dimensional changes. In RDP model, the wall is modeled as equivalent diagonal struts with one, two and three struts. Seven-storey building structure is taken as a reference and structures of 4 and 10 floors are used as comparison. To observe the effect of wall discontinuity at ground level additional 4 models were made for the 7 storey building by removing one, four, six, and all nine walls at ground level (RDP7S3SS1, RDP7S3SS2, RDP7S3SS3, and RDP7S3SS4). For seven-storey model, RDP structures with one, two, and three struts have a comparable lateral stiffness but it tends to increase for model with many struts. Compared to OF, RDP structure with one, two, and three struts have smaller lateral deformation with ratio 0,655; 0,636, and 0,612, respectively. Bending moment, shear and axial in the frame of RDP are also smaller than those of OF with ratio 0,223 and 0,916. RDP model with 3 struts gives better force distribution on the frame compared to the model with single strut. Removing all walls at ground level produce inter storey drift ratio of 4, which is a soft storey phenomenon. On the 4, 7, and 10 storey variation the lateral deformation ratio for RDP and OF are 0,547; 0,612, and 0,581, respectively. The cross sectional area of frame for RDP is as low as 40% compared to that of OF.
EFEK KOMBINASI BEBAN AKSIAL DAN LENTUR SERTA VARIASI BENTUK DAN UKURAN LUBANG TERHADAP KONSENTRASI TEGANGAN PADA BALOK BAJA BERLUBANG M. Sukrawa; A. A. N. A. Angga Pradhana; G. Pringgana; K. Sudarsana; I G. A. Susila; I A. M. Budiwati
JURNAL SPEKTRAN Vol 7 No 2 (2019): Vol. 7 No. 2, JULI 2019
Publisher : Master of Civil Engineering Program Study, Faculty of Engineering, Udayana University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (457.382 KB)

Abstract

EFFECT OF COMBINED AXIAL AND BENDING LOADS AND VARYING SHAPES AND SIZES OF OPENING ON STRESS CONCENTRATION IN STEEL BEAM WITH WEB OPENINGABSTRACTResearch related to stress concentrations in perforated steel beams is usually carried out on simple beams without the influence of axial loads. In this study, modeling of 2-story steel frame structures was carried out to evaluate the effect of the combination of axial and flexural loads on the stress concentration around the opening in the steel beam. The observed opening includes square and circular opening, with and without reinforcement around the opening, with opening dimensions of 0.3 H, 0.5 H, and 0.7 H. H is the height of the beam. The types of reinforcement are All Around (AA), Long Horizontal (LH), and Doubler Plate (DP). The analysis results showed that 17% increase in beam axial force due to earthquake load, resulting in stress increase of 9% in square opening. The maximum stress around circular opening is smaller than that on the square one. The maximum stresses in the circular openings are 0.35 fy, 0.43 fy, and 0.69 fy for opening dimensions of 0.3 H, 0.5 H and 0.7 H, respectively. In the square opening, the maximum stress in 0.3 H opening is 0.57 fy, while for opening dimension of 0.5 H and 0.7 H the stresses exceeds the yield stress of the steel. Addition of AA and LH reinforcement in 0.5 H square opening, results in stresses lower than fy, whereas for the 0.7 H opening the reinforcement around the hole is ineffective.
STUDI ANALITIKAL PERILAKU DAN KINERJA STRUKTUR RANGKA DINDING PENGISI (RDP) DENGAN VARIASI KETEBALAN DINDING Made Sukrawa; Ida Ayu Made Budiwati; Ida Bagus Dharma Giri; I Putu Agus Putra Wirawan
JURNAL SPEKTRAN Vol 8 No 2 (2020): VOL. 8 NO. 2, JULI 2020
Publisher : Master of Civil Engineering Program Study, Faculty of Engineering, Udayana University

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

ABSTRAK Studi analitikal ini dilakukan untuk mengevaluasi efek dari ketebalan dinding pada struktur rangka dinding pengisi (RDP) sebagai struktur penahan beban gempa. Analisis perilaku dan kinerja struktur perlu dilakukan sehingga diperoleh struktur yang aman bagi penghuni bangunan jika terjadi gempa yang kuat. Metode pemodelan divalidasi terhadap hasil uji laboratorium peneliti lain. Hasil validasi menunjukkan bahwa kurva beban-simpangan dan tegangan model RDP menggunakan metode strat diagonal dan elemen shell, serta analisis statik pushover sudah mendekati hasil uji laboratorium. Metode pemodelan tersebut diaplikasikan pada model struktur gedung hotel 3 dan 5 lantai dan dianalisis linier dan nonlinier statik pushover menggunakan software SAP2000. Struktur gedung 3 dan 5 lantai dibuat dengan ketebalan dinding yang sama 150 mm setiap tingkat (M3TF dan M5TF) dan tebal yang bervariasi (M3TV dan M5TV). Ketebalan yang diperoleh pada struktur M3TV dari lantai atas hingga bawah yaitu 150 mm, 250 mm, 300 mm dan untuk struktur M5TV yaitu 150 mm, 200 mm, 250 mm, 300 mm, 350 mm. Hasil analisis menunjukkan bahwa model RDP dengan variasi ketebalan dinding memiliki perilaku dan kinerja yang lebih baik dibandingkan tanpa variasi ketebalan dinding baik 3 dan 5 lantai, dilihat dari perubahan kinerja struktur dari B-IO (dapat segera dihuni) menjadi B (operational level). Model M3TF dan M5TF mengalami sendi plastis pertama pada dinding lantai 1, sedangkan M3TV mengalami sendi plastis pertama pada balok lantai 1 dan M5TV mengalami sendi plastis pertama pada balok lantai 1 sampai 3. Hal ini menunjukkan model RDP dengan variasi ketebalan dinding terhindar dari kegagalan soft story, sehingga variasi ketebalan dinding sangat diperlukan.
STUDI EKSPERIMENTAL TENTANG KEKUATAN DINDING BATA DENGAN PERKUATAN Maya Saridewi Pascanawaty; M Sukrawa; I.A M Budiwati
JURNAL SPEKTRAN Vol 4 No 1 (2016): Vol. 4, No. 1, Januari 2016
Publisher : Master of Civil Engineering Program Study, Faculty of Engineering, Udayana University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (549.489 KB) | DOI: 10.24843/SPEKTRAN.2016.v04.i01.p05

Abstract

Abstract: Experimental study on the strength of brick walls have been done through literature review and laboratory testing to determine flexural, compressive and shear behaviour of the walls. Four different type of walls were used consisted of walls without plastering (TP), walls with plastering (DP), walls with plastering and chicken mesh reinforcement (DPK), and walls with plastering and wire mesh M4 reinforcement (DPW). The behaviour examined included load-deformation relationship and crack pattern/mode of failure. Laboratory testing included compression test (C) namely CTP, CDP, CDPK and CDPW; bond/shear strength test (S) namely STP, SDP, SDPK, and SDPW; flexural strength tests for failure plane perpendicular to bed joints (F) namely FTP?, FDP?, FDPK?, and FDPW?; and flexural strength tests for failure plane parallel to bed joints, namely FTP//, FDP//, FDPK// and FDPW//. Prior to testing the wall, tests on constituent materials were conducted. Red brick (made in Negara) showed compressive strength of 11,03 N/mm² with water absorption of 21,84%. Compressive strength of mortar was 9,1 N/mm². For the wall specimens testing was done after 28 days. The data obtained from the wall tests showed that compression strength for CTP, CDP, CDPK and CDPW are 3,82 N/mm², 3,84 N/mm², 7,46 N/mm², and 6,33 N/mm², respectively. Values for CDP, CDPK and CDPW are 1,01; 1,95; and 1,86 greater than that for CTP. Bond strength values of STP, SDP, SDPK and SDPW are 0,11 N/mm², 0,28 N/mm², 0,54 N,mm², and 0,42 N/mm², respectively. Values for SDP, SDPK and SDPW are 2,58; 4,88; and 3,87 greater than that of STP. Flexural strength values of FTP? and FDP? are 0,93 N/mm² and 1,27 N/mm², with a failure load for FTP?, FDP?, FDPK?, and FDPW? are sebesar 8,17 KN, 25,17 KN, 31,17 KN and 40,67 KN, respectively. The values for FDP?, FDPK?, and FDPW? are 3,08; 3,82; and 4,98 greater than that of FTP?. Flexural strength values of FTP// and FDP// are 0,38 N/mm² and 0,66 N/mm², with a failure load for FTP//, FDP//, FDPK//, and FDPW// are 3,5 KN, 13,67 KN, 18,33 KN and 32,83 KN, respectively. The values for FDP//, FDPK//, and FDPW// are 3,9; 5,24; and 9,38 greater than that of FTP//. The flexural strength of FDPK and FDPW that’s not analyzed because it was a shear failure and not a flexural failure. Stiffness (EA) for CTP, CDP, CDPK, and CDPW are 725,09 KN, 1096,32 KN,  2357,64 KN, and 1869,78 KN, respectively. The last three values are 1,5; 3,3; and 2,6  greater than that for CTP. Stiffness (EI) of FTP? was 23,78 KNm2, while stiffness of FDP?, FDPK? and FDPW? are 68,68 KNm2,  96,31 KNm2 and 112,17 KNm2, respectively, or 2,9; 4,0; and 4,7 greater than that for FTP?. Stiffness (EI) of FTP// was 12,99 KNm2, while stiffness of FDP//, FDPK//, and FDPW// were 46,89 KNm2, 84,53 KNm2 and 119,51 KNm2, respectively, or 3,6; 6,5; and 9,2 greater than that for FTP//.
STUDI PARAMETRIK PADA STRUKTUR RANGKA DINDING PENGISI BERLUBANG DENGAN DAN TANPA PENGEKANG DAN APLIKASINYA DALAM PERENCANAAN STRUKTUR GEDUNG Putu Dyah Jasmine Pradnyantari; Made Sukrawa; Ida Ayu Made Budiwati
JURNAL SPEKTRAN Vol 8 No 1 (2020): VOL. 8, NO. 1, JANUARI 2020
Publisher : Master of Civil Engineering Program Study, Faculty of Engineering, Udayana University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (645.845 KB)

Abstract

Dinding pengisi dalam analisis struktur dapat dimodel sebagai strat diagonal dengan lebar strat sebagai fungsi dari modulus elastisitas, material rangka (frame) (f’c), material dinding (f’m), momen inersia kolom, sudut diagonal, dan panjang diagonal. Struktur rangka dinding pengisi berlubang (RDPB) dapat juga dimodel menggunakan shell element dan elemen frame. Studi ini dilakukan dengan tujuan untuk menganalisis pengaruh parameter yaitu, sudut diagonal, kekakuan kolom, posisi dan rasio lubang (dengan dan tanpa pengekang), f’c, dan f’m terhadap perilaku RDPB pada struktur gedung 5 lantai akibat bebani gempa. Sebanyak 37 model dibuat dengan memvariasikan parameter tersebut. Hasil penelitian menunjukkan bahwa parameter yang sensitif dan penting untuk diperhatikan dalam pemodelan RDPB adalah mutu dinding, rasio lubang dan sudut diagonal. Penambahan pengekang berupa balok dan kolom praktis juga merupakan parameter penting yang mempengaruhi perilaku RDPB karena menghasilkan struktur yang lebih kaku dan lebih kuat. Penurunan simpangan struktur dan tegangan pada dinding masing-masing sebesar 43% dan 14%. Penambahan pengekang juga menghasilkan penurunan gaya-gaya dalam dan kebutuhan tulangan pada balok dan kolom rangka. Posisi lubang sentris dan eksentris berpengaruh sangat kecil terhadap simpangan struktur dan tegangan pada dinding sehingga tidak penting untuk dibedakan dalam pemodelan. RDPB dengan lubang eksentris menghasilkan penurunan simpangan struktur dan tegangan dinding 1% dan 0,8% lebih kecil dibandingkan dengan simpangan struktur dan tegangan dinding pada struktur dengan lubang sentris.
PERKUATAN SEISMIK STRUKTUR RANGKA BETON BERTULANG MENGGUNAKAN BREISING BAJA TIPE X DAN V TERBALIK Made Sukrawa; Ida Bagus Dharma Giri; I Putu Deskarta; Made Hendra Prayoga
JURNAL SPEKTRAN Vol 4 No 2 (2016): Vol. 4, No. 2, Juli 2016
Publisher : Master of Civil Engineering Program Study, Faculty of Engineering, Udayana University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (591.065 KB) | DOI: 10.24843/SPEKTRAN.2016.v04.i02.p10

Abstract

Abstract: Analysis of reinforced concrete frame with steel braces has been done to compare the behavior of the open frame structure with reinforced concrete structure with steel braces. Three models of 2D open frame structure with 3, 4 and 5 floors were made and analyzed in SAP2000 v17 with intermediate detailing according to Indonesian Codes for Seismic Load (SNI 1726: 2002). 3-span frame structure with a span length of 6 m and level height of 3,5 m were designed according to SNI 1726: 2002, and then re-analyzed with special detailing according to New Indonesian Codes for Seismic Load (SNI 1726: 2012). After that, it was added with braces as seismic retrofitting. Two types of braces (X and concentric inverted V) were used in this study and analyzed with conventional analysis and stage construction analysis according to their stages of implementation. From the analysis results, several structure components that analyzed according to SNI 1726:2012 provitions were experience over-stressed. After retrofitted with steel braces, those components fulfill strength provition according to SNI 2847:2013 about structural concrete regulations for buildings. In addition to that, displacements that occurs on braced frame are smaller than displacements of the open frame structure with ratio of 0.08, 0.12, and 0.18 for X-brace frames with 3,4, and 5 storey and 0.07, 0.11, and 0.16 for inverted-V brace. With staged construction analysis, displacements of  X-braced frame structure increased by 14.38%, 13.62%, and 9.98% from the conventional analysis results for structure with 3, 4,and 5 storey. For structure with inverted-V brace, displacements increased by 15.83%, 14.29%, and 10.09%.
Perkuatan Pelat Jembatan Dek Baja dengan Overlay Beton Bertulang Made Sukrawa; I K. Sudarsana; I Wayan Dana
Jurnal Teknik Sipil Vol 18 No 3 (2011)
Publisher : Institut Teknologi Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5614/jts.2011.18.3.2

Abstract

Abstrak. Penelitian tentang metode perkuatan pelat jembatan komposit dek baja bergelombang (CSD) telah dilakukan dengan mempertebal pelat menggunakan overlay beton bertulang. Pengujian Laboratorium dalam skala 1:2 dilakukan dengan membuat dan menguji 12 komponen pelat komposit tebal 95 mm, lebar 500 mm dan panjang 2 kali 700 mm berupa pelat menerus satu arah. Tiga pelat kontrol dan 9 pelat dengan perkuatan diuji sampai runtuh, delapan pelat diberikan pembebanan awal sampai terjadi retak awal pada daerah tumpuan tengah untuk menirukan pelat yang sudah retak. Analisis dengan model elemen hingga (MEH) menggunakan program LUSAS v 13.57 juga dilakukan sebagai perbandingan. Perilaku lentur pelat akibat dua beban garis diamati dalam bentuk grafik beban-lendutan pada umur beton overlay 3, 7 dan 28 hari, dengan bahan accelerator pada beton overlay. Hasil pengujian menunjukkan bahwa kekuatan dan kekakuan lentur pelat dengan overlay beton meningkat secara meyakinkan dengan nilai masing-masing 45% dan 100% pada umur overlay 3 hari. Pada umur overlay 3 dan 7 hari kekuatan pelat komposit hampir mencapai kekuatan pelat pada umur 28 hari. Model Elemen Hingga memberikan kekuatan dan kekakuan pelat yang lebih besar dari hasil pengujian laboratorium, namun perilaku kedua pelat mirip, dimana, pada pembebanan yang lebih tinggi kekakuan pelat menurun. Abstract. Research on strengthening method of bridge deck with corrugated steel deck by increasing its thickness using reinforced concrete overlay was conducted by casting and testing 12 slab specimens with total thickness of 95 mm, width 500 mm and length 2 times 700 mm, which is a 1:2 scale of continuous one way slab. Three control slabs and 9 strengthened slabs were tested until failure, 8 slabs were preloaded until initial crack occurs on the middle support region to simulate cracked deck. Finite element model (FEM) using LUSAS v 13.57 was also done as comparison. Slab behavior under two strip loadings was recorded as load-deformation graph at concrete overlay age of 3, 7, and 28 days, with accelerator in concrete overlay. Test result showed that the strength and stiffness of deck with concrete overlay improved by 45% and 100%, respectively, at concrete overlay age of 3 days. Interestingly enough, at the overlay age of 3 and 7 days, the strength of composite slab almost reach its 28 days strength. Finite Element Model showed that the deck strength and stiffness are larger than those of the test results, however, their behavior is similar in which, at higher load level, the stiffness of the slab reduce noticeably.
Kinerja Struktur Rangka Beton Bertulang dengan Penambahan Dinding Pengisi Berlubang sebagai Perkuatan Seismik Ida Ayu Made Budiwati; Made Sukrawa
Jurnal Teknik Sipil Vol 24 No 1 (2017)
Publisher : Institut Teknologi Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5614/jts.2017.24.1.6

Abstract

AbstrakPenelitian ini dilakukan guna memperoleh model struktur rangka beton bertulang dengan dinding pengisi (RDP) berlubang, dengan dan tanpa perkuatan di sekitar lubang (lintel), sebagai perkuatan seismik, dengan membandingkan perilaku dan kinerja struktur RDP dengan berbagai rasio lubang. Pada tahap awal dilakukan validasi model dengan membandingkan perilaku struktur yang dimodel menggunakan elemen shell (RDPsh) dan strut diagonal (RDPst) dengan hasil uji laboratorium yang telah dilakukan oleh peneliti lain. Model validasi menunjukkan bahwa RDPsh menghasilkan diagram beban simpangan lateral yang lebih mendekati hasil tes dibandingkan dengan RDPst. Disamping itu, persamaan lebar strut untuk dinding berlubang tanpa lintel tidak bisa digunakan untuk dinding berlubang dengan lintel karena lintel menambah kekakuan rangka, memperkuat dinding di sekitar lubang dan mengurangi tegangan maksimum pada sudut lubang sampai 40%. Lebar strut diagonal kemudian dimodifikasi untuk mendapatkan model yang menghasilkan respon sesuai dengan RDPsh. Kemudian model rangka beton bertulang 3, 4, dan 5 lantai dengan dinding pengisi berlubang sentris dengan lintel di sekeliling lubang dibuat dengan variasi rasio lubang 0 "“ 100%. Hasil analisis pada RDP 3 lantai menunjukkan bahwa, terjadi pengurangan simpangan lateral masing-masing sebesar 65%, 58%, 43%, 22%, dan 5% untuk rasio lubang 0%, 20%, 40%, 60%, dan 80%. Persentase pengurangan yang hampir sama juga terjadi pada rangka 4 dan 5 lantai. Untuk rangka 3-lantai, penambahan dinding pengisi dengan rasio lubang terbesar 60% cukup memadai untuk menahan beban gempa yang disyaratkan SNI 1726:2012. Tetapi, untuk rangka 4 dan 5 lantai, diperlukan dinding dengan rasio lubang maksimum 40%. Penambahan dinding pengisi meningkatkan kemampuan struktur dalam menahan gaya geser dasar akibat gempa. Namun demikian, peningkatan kekuatan ini disertai dengan penurunan daktilitas struktur seiring dengan menurunnya rasio lubang.AbstractThis research was conducted to develop a model of seismic retrofitting of reinforced concrete frame using infill wall with central openings, with and without lintels around the opening, by comparing the behaviour and performance of the frame structures with varying opening ratios. Prior to model the strengthened frames, validation was done by comparing the behaviour of computer models using shell element (RDPsh) and diagonal strut (RDPst) to those of laboratory tests conducted by others. The validation models show that the lateral load-displacement diagrams of RDPsh fit the test result better than the strut ones. It was also found that the strut width equation for opening without lintel can not be used for opening with lintels as the lintels stiffen the frame and strengthen the wall around the openings. Based on these results, the width of strut was modified to match the response of model using shell element with lintels around the opening. The RC frames of 3, 4, and 5 storey retrofitted using infill wall with central opening ratio varies from 0 to 100%, was then conducted by modeling the infill wall as an equivalent diagonal strut and shell elements in SAP2000 software. The analysis results of 3-storey frames show that, reduction on lateral drifts of 65%, 58%, 43%, 22%, and 5% was observed for opening ratio of 0%, 20%, 40%, 60%, dan 80%, respectively. Similar results were also found for the 4 and 5 storey frames. From the reinforcement requirements it can be concluded that the strengthening method can be applied with limitation on the wall opening ratios. For 3- storey frames, the addition of infill wall with opening ratio up to 60% is adequate to withstand the quake load specified in the SNI 1726:2012. For 4 and 5-storey frames however, opening ratio of 40% or less is required. Interestingly, the addition of infill wall with lintels can withstand higher base shear forces. However, the increased strength is followed by a decreased ductility in line with decreasing opening ratio.
Design Aspect of including Infill Wall in RC Frame Design* Sukrawa, M.
Civil Engineering Dimension Vol. 16 No. 1 (2014): MARCH 2014
Publisher : Institute of Research and Community Outreach - Petra Christian University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1142.884 KB) | DOI: 10.9744/ced.16.1.24-32

Abstract

This study compares analysis and design of a four story reinforced concrete (RC) frame structure with infill wall at upper levels and open at basement level. For the analysis, the RC frame are modeled as open frame (MOF) and infilled-frames using six compression only cross diagonal strut (MIF-Strut), and infilled frame using shell elements (MIF-Shell). Another model, MIF-Full, is created by adding walls at basement level of the MIF-Strut to study the effect of wall discontinuity. All three dimensional models are loaded with gravity load and quake load appropriate for South Bali region. Results show that the infilled-frame models are 4.8 times stiffer than MOF in the wall direction. Perpendicular to the wall, however, the stiffness increase is 29%. Soft storey mechanism exists in the absence of wall at basement level, regardless of reasonable column dimensions.
Strengthening Using Type-V Bracing for Structural Integrity of Reinforced Concrete Frame Resists Earthquake Loads Made Sukrawa; I Gede Adi Susila; Aditya Permana Putra
Journal of International Conference Proceedings (JICP) Vol 2, No 1 (2019): Proceedings of the 3rd International Conference of Project Management (ICPM) Bal
Publisher : AIBPM Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32535/jicp.v2i1.434

Abstract

Relatively new seismic code has been introduced in Indonesia (SNI 1726-2012) which affects old structures. Mostly, the existing structures does not meet the requirement of new regulation: overstressed. Therefore, it is important to strengthen reinforced concrete (RC) structure in order to meet the performance level and structural behaviour satisfied. In this study, the retrofitting method was performed by using a type V steel braces both external and internal settlement. Clearly, the advantage of braces is significantly increases lateral capacity where small amount of mass also invoked into the structures. Computer simulation using SAP2000 found that most of the structures have been overstress on its components, indeed reinforcement is necessary with braces. Nonlinear pushover analysis was performed on type-V braces with and without perimeter frames which reviewed structural performances. Evaluation of 3, 5, 8 and 10 storey structures designed under previous code and failures of structural components found after the most recent code to be implemented. Lateral load capacity and structural performance were observed to determine the capability dissipate earthquake energy that occurred in structural components with plastic joints distribution. Results of study provides comparison of behaviour and performance of each model. It found that the ultimate capacity of each model produced can increase base shear up to ± 150% larger compared to the existing structures. From pushover analysis, the curve of each model measured for performance level and it found to be set of the Operational (O), Immediate Occupancy (IO) and it has not been exceeded the Live Safety level (LS) as the result of structural strengthening using bracing. The bracing applied will provide a higher lateral capacity and minimum level of damage.