Claim Missing Document
Check
Articles

PEMANFAATAN ALGORITMA K-MEANS DALAM ANALISIS DATA PENJUALAN TOKO BUYUNG UPIK JS DI LAZADA Angraeni, Devita Fitri; Rahaningsih, Nining; Dana, Raditya Danar; Rohmat, Cep Lukman
Jurnal Informatika dan Teknik Elektro Terapan Vol. 13 No. 2 (2025)
Publisher : Universitas Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23960/jitet.v13i2.6438

Abstract

Banyaknya produk yang dijual oleh Toko Buyung Upik JS di Lazada menimbulkan kesulitan dalam menentukan produk yang laku dan kurang laku, sehingga terjadi ketidakseimbangan stok, seperti kelebihan pada produk yang kurang diminati dan kekurangan pada produk yang populer. Penelitian ini bertujuan mengelompokkan produk berdasarkan pola penjualan menggunakan teknik data mining untuk membantu strategi penjualan dan pengelolaan stok yang lebih efektif. Algoritma K-Means digunakan untuk clustering data penjualan, mencakup jumlah stok, transaksi, dan harga. Proses data mining meliputi tahapan Selection, Preprocessing, Transformation, Data Mining, dan Interpretation/Evaluation. Penentuan jumlah cluster optimal dilakukan dengan Elbow Method, sedangkan kualitas clustering dievaluasi menggunakan Davies Bouldin Index (DBI). Hasil penelitian menunjukkan jumlah cluster optimal adalah empat: Cluster 0 (83 produk, penjualan stabil), Cluster 1 (121 produk, penjualan tinggi), Cluster 2 (14 produk, kurang diminati), dan Cluster 3 (38 produk, penjualan moderat). Nilai rata-rata jarak dalam cluster adalah 54.941.560,812, dengan DBI sebesar 0,386 yang menunjukkan kualitas clustering cukup baik. Hasil ini memberikan wawasan bagi toko untuk memprioritaskan pengelolaan stok dan mengoptimalkan penjualan.
Optimalisasi Layanan Kesehatan di Puskesmas Melalui Pengembangan Chatbot Berbasis Web Menggunakan Flowise AI Mulyawan Mulyawan; Raditya Danar Dana; Agus Bahtiar; Irfan Ali
Jurnal Teknologi Informasi dan Multimedia Vol. 6 No. 3 (2024): November
Publisher : Sekawan Institut

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35746/jtim.v6i3.617

Abstract

The development of a web-based chatbot service for Puskesmas presents a potential solution to improve the accessibility and efficiency of healthcare services. This research uses Flowise AI, a chatbot development platform that leverages machine learning technology to support dynamic information processing and provide accurate and relevant responses to users. Flowise AI is integrated with Langchain Retriever to further enhance dynamic information processing, ensuring accurate and relevant responses to users. Using the Rapid Application Development (RAD) methodology, the chatbot development follows a fast-paced cycle, enabling early prototyping and continuous user feedback. The chatbot is tested using Black Box Testing to verify functionality and System Usability Scale (SUS) to evaluate usability. The test results show that the chatbot is able to provide accurate responses to patient queries, especially on relevant health topics, with an SUS score of 75, which falls within the "good" category. This score reflects that the chatbot is easy to use and acceptable to users. This technology allows the chatbot to provide more accurate, relevant, and contextual responses to patient inquiries, while dynamically accessing information from various sources, thereby improving the efficiency and effectiveness of healthcare services.
A Comparative Analysis of Univariate and Multivariate LSTM Models for Nokia (NOK) Stock Price Prediction Saputra, Roni; Martanto, Martanto; Dana, Raditya Danar
Jurnal Komtika (Komputasi dan Informatika) Vol 9 No 2 (2025)
Publisher : Universitas Muhammadiyah Magelang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31603/komtika.v9i2.15152

Abstract

Predicting stock prices is a challenging yet crucial task in financial markets. This research aims to compare the performance of two Long Short-Term Memory (LSTM) neural network models for forecasting the closing price of Nokia Corporation (NOK) stock: a univariate model using only historical closing prices and a multivariate model incorporating open, high, low, close, and volume (OHLCV) data. Utilizing historical daily data from 2015 to 2025, both models were trained to predict the next day's price based on the previous 60 days. The models' accuracy was rigorously evaluated using three key metrics: Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and Mean Absolute Percentage Error (MAPE). The findings revealed a decisive outcome. The univariate LSTM model consistently outperformed its multivariate counterpart across all evaluation metrics. It achieved an MAE of 0.0591, an RMSE of 0.0887, and a MAPE of 1.39%, while the multivariate model recorded higher values of 0.0623, 0.0934, and 1.45%, respectively. This study concludes that for NOK stock prediction, a simpler model with fewer features proved to be more effective. The additional data points in the multivariate model did not enhance predictive accuracy and may have introduced noise, suggesting that the historical pattern of closing prices alone is a more powerful predictor for this particular asset.