Claim Missing Document
Check
Articles

Implementasi Jaringan CNN-LSTM Untuk Deteksi Citra X-Ray Dada Covid 19 Ratna Sari; Agus Eko Minarno; Yufis Azhar
Jurnal Repositor Vol 4 No 4 (2022): November 2022
Publisher : Universitas Muhammadiyah Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22219/repositor.v4i4.1481

Abstract

Wabah penyebaran Virus Covid 19 muncul desember 2019 di kota Wuhan, China. Virus tersebut mulai menggemparkan dunia karena begitu cepat menyebar ke seluruh belahan dunia. Virus Covid 19 dapat mampu ditularkan melewati batuk bahkan percikan saat berbicara. Penderita terkena Covid 19 dapat merasakan gangguan pernapasan dan parahnya lagi dapat menyebabkan kematian. Sampai sekarang virus tersebut banyak menyebabkan korban meninggal dunia. Maka dari itu dibutuhkan sistem deteksi otomatis untuk mendiagnosa cepat agar mencegah penyebaran Covid 19. Penelitian ini mengusulkan sebuah kombinasi metode convolutional neural network (CNN) dan long short-term memory (LSTM) untuk mendeteksi Covid 19 dari citra x-ray dada. Dalam penelitian, CNN digunakan sebagai ekstraksi fitur yang dalam dan LSTM digunakan sebagai deteksi menggunakan fitur yang diekstraksi. Data yang digunakan sebanyak 3.829 citra x-ray dada yang terbagi menjadi 3 kelas yaitu, 1.143 citra x-ray Covid 19, 1.341 citra x-ray Normal dan citra x-ray 1.345 Viral Pneumonia. Dari hasil penelitian menggunakan metode CNN menunjukkan akurasi sebesar 98,7%, presisi 98%, recall 1.00%, spesifisitas 99,6%, dan f1-score 99%. Secara keseluruhan, metode CNN-LSTM dapat menjadi salah satu referensi untuk memprediksi penyakit lainnya.
Herbal Leaves Classification Based on Leaf Image Using CNN Architecture Model VGG16 Bella Dwi Mardiana; Wahyu Budi Utomo; Ulfah Nur Oktaviana; Galih Wasis Wicaksono; Agus Eko Minarno
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol 7 No 1 (2023): February 2023
Publisher : Ikatan Ahli Informatika Indonesia (IAII)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29207/resti.v7i1.4550

Abstract

Herbal leaves are a type that is often used by people in the health sector. The problem faced is the lack of knowledge about the types of herbal leaves and the difficulty of distinguishing the types of herbal leaves for ordinary people who do not understand plants. If any type of plant is used, it will have a negative impact on health. Automatic classification with the help of technology will reduce the risk of misidentification of herbal leaf types. To make identification, a precise and accurate herbal leaf detection process is needed. This research aims to facilitate the classification model of herbal leaf images with a higher accuracy value than previous research. Therefore, the proposed method in this classification process is one of the Transfer Learning methods, namely Convolutional Neural Network (CNN) with a pretrained VGG16 model. This research uses a dataset of herbal leaves with a total of 10 classes: Belimbing Wuluh, Jambu Biji, Jeruk Nipis, Kemangi, Lidah Buaya, Nangka, Pandan, Pepaya, Seledri and Sirih. The performance of the results of the proposed classification method on the test dataset using Classification Report shows an increase in the results of the previous research accuracy value from 82% to 97%. This research also applies Image Data Generator in the augmentation process which aims to improve the image of herbal leaves, reduce overfitting, and improve accuracy.
Segmentasi Citra X-Ray Paru dengan Deep Learning Muhammad Hussein; Agus Eko Minarno; Yufis Azhar
Jurnal Repositor Vol 5 No 1 (2023): Februari 2023
Publisher : Universitas Muhammadiyah Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22219/repositor.v5i1.1498

Abstract

Image segmentation is one of the main things in the study of computer vision and image processing. One example is the processing of lung x-ray images to find out diseases in the lungs. U-net is a segmentation model that has been created to make it easier for someone to build a model for image segmentation. U-net can be used on any image. From its advantages, the researchers tried to use U-net in combination with Inception, MobileNet and EfficientNet to segment medical x-ray images of the lungs. The image is resized to 512 x 512 pixels. Augmentation that is done is zoom range, height shift, width shift and horizontal flip. Epoch is 200 and batch size is 4. The best scenario in this research is to use U-net Efficientnetb0 with dice value of 0.967, Jaccard of 0.937.
Klasifikasi COVID-19 Menggunakan Algoritma CNN Muhammad Nuchfi Fadlurrahman; Agus Eko Minarno; Yufis Azhar
Jurnal Repositor Vol 5 No 2 (2023): Mei 2023 (In Press)
Publisher : Universitas Muhammadiyah Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22219/repositor.v5i2.1461

Abstract

X-Ray atau Sinar X merupakan teknik pencitraan pada bidang medis yang digunakan untuk melihat berbagai macam benda di dalam tubuh manusia yang tidak dapat dilihat langsung oleh mata manusia. Salah satu kegunaanya adalah melihat paru-paru manusia khususnya dalam mendeteksi COVID-19. Namun, Sinar X tidak dapat menembus tulang. Adapun salah satu metode klasifikasi citra adalah Convolutional Neural Network (CNN). CNN menerima input berupa gambar, menentukan aspek atau obyek apa saja dalam sebuah gambar yang bisa digunakan untuk mengenali gambar, dan membedakan antara satu gambar dengan gambar lainnya. Penelitian sebelumnya pada kasus ini menggunakan model CNN dengan arsitektur VGG-16. Penelitian ini bertujuan untuk membandingkan hasil akurasi akhir yang diperoleh model CNN dalam mengolah dataset Sinar X. Penelitian ini menggunakan CNN dengan arsitektur VGG-16 dan augmentasi data untuk mendapatkan akurasi yang tinggi. Berdasarkan hasil pengujian yang telah dilakukan menggunakan CNN dengan arsitektur VGG-16 dengan dataset sebanyak 3.829 data yang dibagi menjadi data train, validation, dan test dengan rasio split 80%, 10%, 10% penelitian ini mendapatkan hasil yang cukup baik dengan tingkat akurasi 90%.
Convolutional Neural Network featuring VGG-16 Model for Glioma Classification Agus Eko Minarno; Sasongko Yoni Bagas; Munarko Yuda; Nugroho Adi Hanung; Zaidah Ibrahim
JOIV : International Journal on Informatics Visualization Vol 6, No 3 (2022)
Publisher : Politeknik Negeri Padang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30630/joiv.6.3.1230

Abstract

Magnetic Resonance Imaging (MRI) is a body sensing technique that can produce detailed images of the condition of organs and tissues. Specifically related to brain tumors, the resulting images can be analyzed using image detection techniques so that tumor stages can be classified automatically. Detection of brain tumors requires a high level of accuracy because it is related to the effectiveness of medical actions and patient safety. So far, the Convolutional Neural Network (CNN) or its combination with GA has given good results. For this reason, in this study, we used a similar method but with a variant of the VGG-16 architecture. VGG-16 variant adds 16 layers by modifying the dropout layer (using softmax activation) to reduce overfitting and avoid using a lot of hyper-parameters. We also experimented with using augmentation techniques to anticipate data limitations. Experiment using data The Cancer Imaging Archive (TCIA) - The Repository of Molecular Brain Neoplasia Data (REMBRANDT) contains MRI images of 130 patients with different ailments, grades, races, and ages with 520 images. The tumor type was Glioma, and the images were divided into grades II, III, and IV, with the composition of 226, 101, and 193 images, respectively. The data is divided by 68% and 32% for training and testing purposes. We found that VGG-16 was more effective for brain tumor image classification, with an accuracy of up to 100%. 
Automatic plant recognition using convolutional neural network on malaysian medicinal herbs: the value of data augmentation Noor Aini Mohd Roslan; Norizan Mat Diah; Zaidah Ibrahim; Yuda Munarko; Agus Eko Minarno
International Journal of Advances in Intelligent Informatics Vol 9, No 1 (2023): March 2023
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26555/ijain.v9i1.1076

Abstract

Herbs are an important nutritional source for humans since they provide a variety of nutrients. Indigenous people have employed herbs, in particular, as traditional medicines since ancient times. Malaysia has hundreds of plant species; herb detection may be difficult due to the variety of herb species and their shape and color similarities. Furthermore, there is a scarcity of support datasets for detecting these plants. The main objective of this paper is to investigate the performance of convolutional neural network (CNN) on Malaysian medicinal herbs datasets, real data and augmented data. Malaysian medical herbs data were obtained from Taman Herba Pulau Pinang, Malaysia, and ten kinds of native herbs were chosen. Both datasets were evaluated using the CNN model developed throughout the research. Overall, herbs real data obtained an average accuracy of 75%, whereas herbs augmented data achieved an average accuracy of 88%. Based on these findings, herbs augmented data surpassed herbs actual data in terms of accuracy after undergoing the augmentation technique.
Prediksi Tumor Otak Menggunakan Metode Convolutional Neural Network Muhammad Nafi Maula Hakim; Arif Bagus Nugroho; Agus Eko Minarno
Informatika Mulawarman : Jurnal Ilmiah Ilmu Komputer Vol 17, No 1 (2022): Informatika Mulawarman : Jurnal Ilmiah Ilmu Komputer
Publisher : Mulawarman University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30872/jim.v17i1.5246

Abstract

Berkembangnya suatu teknologi membuat banyak pengaruh bagi beberapa sektor di bidang kesehatan.salah satunya adalah tumor otak. Klasifikasi tumor otak merupakan suatu penilitian yang penting untuk memprediksi hasil antara terinfeksi atau tidak. Pada penelitian ini dilakukan klasifikasi tumor otak dengan dataset berjumlah 300. Hasil yang diperoleh adalah akurasi sebesar 76% untuk model ANN dan 85% untuk model CNN].
Analisis Sentimen Pada Tweet Tentang Penanganan Covid-19 Menggunakan Word Embedding Pada Algoritma Support Vector Machine Dan K-Nearest Neighbor Sabrila, Trifebi Shina; Sari, Veronica Retno; Minarno, Agus Eko
Fountain of Informatics Journal Vol. 6 No. 2 (2021): November
Publisher : Universitas Darussalam Gontor

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21111/fij.v6i2.5536

Abstract

Analisis sentimen merupakan salah satu bidang dari pengolahan data berbentuk teks untuk mengidentifikasi isi yang terkandung dalam teks pada dataset dengan membagi dataset ke dalam dua kelas yaitu sentimen positif dan sentimen negatif. Pada penelitian ini akan dilakukan analisis sentimen terhadap data yang diperoleh dari jejaring sosial Twitter mengenai penanganan Covid-19 oleh pemerintah di Indonesia yang menuai banyak pro dan kontra oleh masyarakat di Indonesia. Tujuan dari penelitian ini adalah untuk mengetahui kecenderungan masyarakat terkait topik tersebut. Metode klasifikasi yang digunakan dalam penelitian ini adalah Support Vector Machine (SVM) dan K-Nearest Neighbor (KNN) dengan ekstraksi fitur Word Embedding. Pengklasifikasian yang dilakukan dengan menggunakan algoritma Support Vector Machine (SVM) dengan menggunakan ekstraksi fitur Word Embedding yaitu Word2Vec menghasilkan akurasi sebesar 85%, presisi 86% , recall 85%, dan nilai AUC sebesar 0.92. Sementara pada algoritma K-Nearst Neighbor (KNN) dengan ekstraksi fitur yang sama, dihasilkan akurasi sebesar 76%, presisi 77%, recall 76% dan nilai AUC sebesar 0.87. Hasil perbandingan dari kedua metode menunjukkan bahwa algoritma Support Vector Machine (SVM) mendapatkan performa yang lebih baik dibandingkan algoritma K-Nearest Neighbor (KNN).
Classification of Malaria Using Convolutional Neural Network Method on Microscopic Image of Blood Smear Minarno, Agus Eko; Izzah, Tsabita Nurul; Munarko, Yuda; Basuki, Setio
JOIV : International Journal on Informatics Visualization Vol 8, No 3 (2024)
Publisher : Society of Visual Informatics

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62527/joiv.8.3.2154

Abstract

Malaria, a critical global health issue, can lead to severe complications and mortality if not treated promptly. The conventional diagnostic method, involving a microscopic examination of blood smears, is time-consuming and requires extensive expertise. To address these challenges, computer-assisted diagnostic methods have been explored. Among these, Convolutional Neural Networks (CNN), a deep learning technique, has shown considerable promise for image classification tasks, including the analysis of microscopic blood smear images. In this study, we employ the NIH Malaria dataset, which consists of 27,558 images, to train a CNN model. The dataset is divided into parasitized (malaria-infected) and uninfected. The CNN architecture designed for this study includes three convolutional layers and two fully connected layers. We compare the performance of this model with that of a pre-trained VGG-16 model to determine the most effective approach for malaria diagnosis. The proposed CNN model demonstrates high accuracy, achieving a value of 96.81%. Furthermore, it records a recall of 0.97, a precision of 0.97, and an F1-score of 0.97. These metrics indicate a robust performance, outperforming previous studies and highlighting the model's potential for accurate malaria diagnosis. This study underscores the potential of CNN in medical image classification and supports its implementation in clinical settings to enhance diagnostic accuracy and efficiency. The findings suggest that with further refinement and validation, such models could significantly improve the speed and reliability of malaria diagnostics, ultimately aiding in better disease management and patient outcomes.
Classification of Dermoscopic Images Using CNN-SVM Minarno, Agus Eko; Fadhlan, Muhammad; Munarko, Yuda; Chandranegara, Didih Rizki
JOIV : International Journal on Informatics Visualization Vol 8, No 2 (2024)
Publisher : Society of Visual Informatics

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62527/joiv.8.2.2153

Abstract

Traditional machine learning methods like GLCM and ABCD rules have long been employed for image classification tasks. However, they come with inherent limitations, primarily the need for manual feature extraction. This manual feature extraction process is time-consuming and relies on expert domain knowledge, making it challenging for non-experts to use effectively. Deep learning methods, specifically Convolutional Neural Networks (CNN), have revolutionized image classification by automating the feature extraction. CNNs can learn hierarchical features directly from the raw pixel values, eliminating the need for manual feature engineering. Despite their powerful capabilities, CNNs have limitations, mainly when working with small image datasets. They may overfit the data or struggle to generalize effectively. In light of these considerations, this study adopts a hybrid approach that leverages the strengths of both deep learning and traditional machine learning. CNNs are automatic feature extractors, allowing the model to capture meaningful image patterns. These extracted features are then fed into a Support Vector Machine (SVM) classifier, known for its efficiency and effectiveness in handling small datasets. The results of this study are encouraging, with an accuracy of 0.94 and an AUC score of 0.94. Notably, these metrics outperform Abbas' previous research by a significant margin, underscoring the effectiveness of the hybrid CNN-SVM approach. This research reinforces that SVM classifiers are well-suited for tasks involving limited image data, yielding improved classification accuracy and highlighting the potential for broader applications in image analysis.
Co-Authors Abu Abbas Mansyur Achmad Fauzi Saksenata Ahmad Annas Al Hakim Ahmad Faiz, Ahmad Ahmad Heryanto, Ahmad Akbi, Denar Regata Alfarizy, Muhammad Rifal Alfian Yuniarto Anbiya, Dhika Rizki Andhika Pranadipa Andrian Rakhmatsyah Aria Maulana Eka Mahendra Arif Bagus Nugroho Aripa, Laofin Arrie Kurniawardhani arrie kurniawardhany, arrie AULIA ARIF WARDANA Ayu Septya Maulani Bagaskara, Andhika Dwija Basuki, Setio Bayu Yudha Purnomo Bella Dwi Mardiana Chandranegara, Didih Rizki Cokro Mandiri, Mochammad Hazmi Deris Stiawan Dwi Rahayu Dyah Ayu Irianti Eko Budi Cahyono Fachry Abda El Rahman Feny Aries Tanti Firdhansyah Abubekar Fitri Bimantoro Galang Aji Mahesa Gita Indah Marthasari Hanung Adi Nugroho Haqim, Gilang Nuril Hardianto Wibowo Hariyady Hariyady Harmanto, Dani Hasanuddin, Muhammad Yusril Hazmi Cokro Mandiri, Mochammad Ibrahim, Zaidah Indah Soesanti Iqbal Fairus Zamani Irfan, Muhammad irma fitriani Izzah, Tsabita Nurul Lailis Syafa'ah Lailis Syafa’ah Linggar Bagas Saputro Lusianti, Aaliyah Mandiri, Mochammad Hazmi Cokro Moch Ilham Ramadhani Moch. Chamdani Mustaqim Muhammad Afif Muhammad Azhar Ridani Muhammad Hussein Muhammad Nafi Maula Hakim Muhammad Nasrul Tsalatsa Putra Muhammad Nuchfi Fadlurrahman Nanik Suciati Naser Jawas, Naser Nia Dwi Nurul Safitri Noor Aini Mohd Roslan Norizan Mat Diah Prabowo, Christian Ramadhani, Moch Ilham Rangga Kurnia Putra Wiratama Ratna Sari Riksa Adenia Rizalwan Ardi Ramandita Rizka Nurlizah Sabrila, Trifebi Shina Sari, Veronica Retno Sari, Zamah Sasongko Yoni Bagas Setiyo Kantomo, Ilham Sumadi, Fauzi Dwi Setiawan Suryani Rachmawati Suseno, Jody Ririt Krido Toton Dwi Antoko Trifebi Shina Sabrila Tsabitah Ayu Ulfah Nur Oktaviana Veronica Retno Sari Vizza Dwi Wahyu Andhyka Kusuma Wahyu Budi Utomo Wicaksono, Galih Wasis Wicaksono, Galih Wasis Widya Rizka Ulul Fadilah Wildan Suharso Yesicha Amilia Putri Yoga Anggi Kurniawan Yuda Munarko Yudhono Witanto Yufis Azhar Yundari, Yundari Zaidah Ibrahim Zaidah Ibrahim Zamah Sari Zamani, Iqbal Fairus