Claim Missing Document
Check
Articles

Found 3 Documents
Search
Journal : Prosiding SNATIF

PENINGKATAN AKURASI PADA ALGORITMA C4.5 MENGGUNAKAN ADABOOST UNTUK MEMINIMALKAN RESIKO KREDIT Nurzahputra, Aldi; Muslim, Much Aziz
Prosiding SNATIF 2017: Prosiding Seminar Nasional Teknologi dan informatika (BUKU 2)
Publisher : Prosiding SNATIF

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

AbstrakTingkat akurasi dalam penilaian risiko pemohon kredit sangat penting bagi organisasi pemberi pinjaman. Data pemohon kredit yang besar dapat diolah menjadi informasi yang dapat digunakan sebagai pendukung keputusan dalam menentukan permohoanan kredit. Pengolahan data tersebut termasuk dalam bidang data mining.Salah satu metode yang dapat diterapkan dalam permohonan kredit, yaitu klasifikasi. Terdapat beberapa algoritma klasifikasi salah satunya yaitu pohon keputusan atau decision tree. Algoritma decision tree yang terkenal ialah C4.5. Algoritma C4.5 dapat diterapkan dalam mengklasifikasi permohonan kredit. Penelitian ini menggunakan German Credit Card dataset. Adapun tujuan penelitian ini yaitu meningkatkan akurasi dari algoritma C4.5 dengan menerapkan adaboost dalam mengklasifikasi permohonan kredit dengan membandingkan hasil sebelum dan sesudah diterapkan adaboost. Validasi dalam penelitian ini menggunakan 10 fold cross validation. Sedangkan pengukuran akurasi diukur dengan confussion matrix. Hasil percobaan menunjukan terdapat peningkatan akurasi 3.7%. Akurasi penerapan algoritma C4.5 saja mencapai 70.5%. Sedangkan akurasi pnerapan algoritma C4.5 dengan adaboot mencapai 74.2%. Kata Kunci:C4.5, Adaboost, Data Mining, German Credit Card.
PENERAPAN ADABOOST UNTUK KLASIFIKASI SUPPORT VECTOR MACHINE GUNA MENINGKATKAN AKURASI PADA DIAGNOSA CHRONIC KIDNEY DISEASE Listiana, Eka; Muslim, Much Aziz
Prosiding SNATIF 2017: Prosiding Seminar Nasional Teknologi dan informatika (BUKU 3)
Publisher : Prosiding SNATIF

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

AbstrakDatabase masa kini berkembang dengan sangat pesat khususnya dalam bidang kesehatan. Data tersebut apabila tidak diolah dengan baik maka akan menjadi sebuah tumpukan data yang tidak bermanfaat, sehingga perlu adanya proses untuk mengolah data tersebut menjadi sebuah informasi yang bermanfaat. Proses tersebut biasa disebut dengan data mining yang merupakan suatu bidang ilmu penelitian yang mampu mengolah database menjadi pengetahuan yang dapat dimanfaatkan khusunya dalam penelitian ini akan digunakan untuk mendiagnosa penyakit, diantaranya chronic kidney disease. Salah satu metode data mining yang digunakan untuk memprediksi sebuah keputusan dalam suatu hal adalah klasifikasi, di mana dalam metode klasifikasi ada algoritma support vector machine yang bisa digunakan untuk mendiagnosa chronic kidney disease. Dalam penelitian ini untuk meningkatkan akurasi algoritma support vector machine dalam mendiagnosa chronic kidney disease menggunakan adaptive boosting (adaboost) sebagai ensemble learning dengan pemilihan kernel, nilai parameter C, dan iterasi yang sesuai. Dari hasil percobaan, menerapkan adaboost, dengan kernel linier dan pemilihan nilai parameter C pada algoritma support vector machine dalam mendiagnosa chronic kidney disease menunjukkan bahwa tingkat akurasi mempunyai peningkatan sebesar 37% dengan pemaparan hasil seperti berikut, 62,5% (SVM); 97,75% (SVM+linier kernel); 99,5% (SVM+linier kernel +adaboost).  Kata Kunci: adaboost, data mining, SVM, Adaptive boosting, chronic kidney disease
PENERAPAN ADABOOST UNTUK KLASIFIKASI SUPPORT VECTOR MACHINE GUNA MENINGKATKAN AKURASI PADA DIAGNOSA CHRONIC KIDNEY DISEASE Listiana, Eka; Muslim, Much Aziz
Prosiding SNATIF 2017: Prosiding Seminar Nasional Teknologi dan informatika (BUKU 3)
Publisher : Prosiding SNATIF

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

AbstrakDatabase masa kini berkembang dengan sangat pesat khususnya dalam bidang kesehatan. Data tersebut apabila tidak diolah dengan baik maka akan menjadi sebuah tumpukan data yang tidak bermanfaat, sehingga perlu adanya proses untuk mengolah data tersebut menjadi sebuah informasi yang bermanfaat. Proses tersebut biasa disebut dengan data mining yang merupakan suatu bidang ilmu penelitian yang mampu mengolah database menjadi pengetahuan yang dapat dimanfaatkan khusunya dalam penelitian ini akan digunakan untuk mendiagnosa penyakit, diantaranya chronic kidney disease. Salah satu metode data mining yang digunakan untuk memprediksi sebuah keputusan dalam suatu hal adalah klasifikasi, di mana dalam metode klasifikasi ada algoritma support vector machine yang bisa digunakan untuk mendiagnosa chronic kidney disease. Dalam penelitian ini untuk meningkatkan akurasi algoritma support vector machine dalam mendiagnosa chronic kidney disease menggunakan adaptive boosting (adaboost) sebagai ensemble learning dengan pemilihan kernel, nilai parameter C, dan iterasi yang sesuai. Dari hasil percobaan, menerapkan adaboost, dengan kernel linier dan pemilihan nilai parameter C pada algoritma support vector machine dalam mendiagnosa chronic kidney disease menunjukkan bahwa tingkat akurasi mempunyai peningkatan sebesar 37% dengan pemaparan hasil seperti berikut, 62,5% (SVM); 97,75% (SVM+linier kernel); 99,5% (SVM+linier kernel +adaboost).  Kata Kunci: adaboost, data mining, SVM, Adaptive boosting, chronic kidney disease
Co-Authors Afifah Ratna Safitri Agus Harjoko Ahmad, Kamilah Alabid, Noralhuda N. Alamsyah - Aldi Nurzahputra Aldi Nurzahputra, Aldi Alfatah, Abdul Muis Alfatah, Abdul Muis Ali, Muazam Amanah Febrian Indriani Aminuyati Anggyi Trisnawan Putra Annegrat, Ahmed Mohamed Astuti, Winda Try Astuti, Winda Try Atikah Ari Pramesti, Atikah Ari Budi Prasetiyo Budi Prasetiyo, Budi Darmawan, Aditya Yoga Dewi Handayani Untari Ningsih Dinova, Dony Benaya Djuniharto Djun Doni Aprilianto Dullah, Ahmad Ubai Eka Listiana Endang Sugiharti, Endang Fadhilah, Muhammad Syafiq Fadli Dony Pradana Falasari, Anisa Farih, Habib al Florentina Yuni Arini, Florentina Yuni Hadiq, Hadiq Hakim, M. Faris Al Hakim, Roshan Aland Hendi Susanto Imam Ahmad Ashari, Imam Ahmad Irfan, Mohammad Syarif Jeffry Nur Rifa’i Jumanto , Jumanto Jumanto Jumanto, Jumanto Jumanto Unjung Khan, Atta Ullah Larasati, Ukhti Ikhsani Larasati, Ukhti Ikhsani Lestari, Apri Dwi Listiana, Eka Listiana, Eka Maulana, Muhamad Irvan Miranita Khusniati moh minhajul mubarok Muhamad Anbiya Nur Islam Mustaqim, Amirul Muzayanah, Rini Nikmah, Tiara Lailatul Nina Fitriani, Nina Ningsih, Maylinna Rahayu Nugraha, Faizal Widya Nur Astri Retno, Nur Astri Nurdin, Alya Aulia Nurriski, Yopi Julia Perbawawati, Anna Adi Perbawawati, Anna Adi Pertiwi, Dwika Ananda Agustina Priliani, Erlin Mega Priliani, Erlin Mega Purnawan, Dedy Putri Utami, Putri Putri, Salma Aprilia Huda Putriaji Hendikawati Putro, Ari Nugroho Qohar, Bagus Al Raharjo, Bagus Purbo Rahman, Raihan Muhammad Rizki Rahmanda, Primana Oky Rahmanda, Primana Oky Riza Arifudin Rofik Rofik, Rofik Roni Kurniawan Rukmana, Siti Hardiyanti Ryo Pambudi S.Pd. M Kes I Ketut Sudiana . Safri, Yofi Firdan Safri, Yofi Firdan Saiful Arifin Salahudin, Shahrul Nizam Sanjani, Fathimah Az Zahra Seivany, Ravenia Simanjuntak, Robert Panca R. Solehatin, Solehatin Sugiman Sugiman Sulistiana Syarifah, Aulia Tanga , Yulizchia Malica Pinkan Tanga, Yulizchia Malica Pinkan Tanzilal Mustaqim Trihanto, Wandha Budhi Trihanto, Wandha Budhi Triyana Fadila Varindya Ditta Iswari Vedayoko, Lucky Gagah Vedayoko, Lucky Gagah Wibowo, Kevyn Alifian Hernanda Yosza Dasril Yosza Dasril