Claim Missing Document
Check
Articles

A stochastic approach for evaluating production planning efficiency under uncertainty Mochamad Wahyudi; Hengki Tamando Sihotang; Syahril Efendi; Muhammad Zarlis; Herman Mawengkang; Desi Vinsensia
International Journal of Electrical and Computer Engineering (IJECE) Vol 13, No 5: October 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v13i5.pp5542-5549

Abstract

Planning production is an essential component of the decision-making process, which has a direct bearing on the effectiveness of production systems. This study’s objective is to investigate the efficiency performance of decision-making units (DMU) in relation to production planning issues. However, the production system in a manufacturing environment is frequently subject to uncertain situations, such as demand and labor, and this can have an effect not only on production but also on profit. The robust stochastic data envelopment analysis model was proposed in this study with maximizing the number of outputs as the objective function thus means of handling uncertainty in input and output in production planning problems. This model, which is based on stochastic data envelopment analysis and a method of robust optimization, was proposed with the intention of providing an efficient plan of production for each DMU of stage production. The model is applied to small and medium-sized businesses (SMEs), with inputs consisting of the cost of labor, the number of customers, and the quantity of raw materials, and the output consisting of profit and revenue. It has been demonstrated through implementation that the proposed model is both efficient and effective.
Quantum computing for production planning Fristi Riandari; Aisyah Alesha; Hengki Tamando Sihotang
International Journal of Enterprise Modelling Vol. 15 No. 3 (2021): Sep: Enterprise Modelling: Quantum computing
Publisher : International Enterprise Integration Association

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (467.321 KB) | DOI: 10.35335/emod.v15i3.50

Abstract

This research investigates the potential of quantum computing in production planning and addresses the limitations of conventional computing approaches. Traditional methods have been partially effective, but they struggle to solve complex optimization problems, accurately predict demand, and manage supply chains efficiently. The unique computational capabilities of quantum computing offer promising solutions to surmount these obstacles and revolutionize production planning processes. This study seeks to bridge the gap between quantum computing and production planning by analyzing the benefits, limitations, and challenges of its applicability in this field. It proposes customized algorithms and methodologies for leveraging quantum computation to enhance production planning efficiency, cost reduction, and decision-making processes. The research demonstrates the potential of quantum algorithms to minimize total production costs while appeasing demand and resource constraints through a numerical example and mathematical formulation. The results emphasize the advantages of quantum computing in terms of cost reduction, enhanced efficiency, and scalability. Comparisons with conventional methods illuminate the benefits and drawbacks of quantum computing in production planning. This research contributes to the development of novel strategies to improve production planning efficiency, lower costs, and enhance decision-making processes, allowing organizations to leverage quantum computing for optimized production operations
Data envelopment analysis for stochastic production and supply chain planning Hengki Tamando Sihotang; Patrisia Teresa Marsoit; Kouvelis Geovany Ortizan
International Journal of Enterprise Modelling Vol. 16 No. 3 (2022): Sep: Enterprise Modelling
Publisher : International Enterprise Integration Association

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (535.788 KB) | DOI: 10.35335/emod.v16i3.63

Abstract

This research presents a stochastic Data Envelopment Analysis (DEA) model for production and supply chain planning. The objective is to evaluate the efficiency of decision-making units (DMUs) in a system considering the stochastic nature of inputs and outputs. The proposed model incorporates uncertainty by assuming normal distributions for the stochastic variables. The model formulates a linear programming problem to maximize the efficiency scores of DMUs subject to constraints that ensure the efficiency of the system. The weights assigned to DMUs and input variables provide insights into their relative importance. A numerical example is presented to demonstrate the application of the model, and the results highlight the efficiency scores and weights for the DMUs. The findings contribute to improving decision-making in production and supply chain systems under uncertain conditions. The developed model offers a practical tool for evaluating efficiency and identifying areas for improvement in real-world systems. Further research can explore extensions and variations of the model to enhance its applicability in different contexts
New Method for Identification and Response to Infectious Disease Patterns Based on Comprehensive Health Service Data Desi Vinsensia; Siskawati Amri; Jonhariono Sihotang; Hengki Tamando Sihotang
MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer Vol 23 No 3 (2024)
Publisher : LPPM Universitas Bumigora

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30812/matrik.v23i3.4000

Abstract

Infectious diseases continue to pose a major threat to global public health and require early detection and effective response strategies. Despite advances in information technology and data analysis, the full potential of health data in identifying disease patterns and trends remains underutilised. This study aims to propose a comprehensive new mathematical model (new method) that utilises health data to identify infectious disease patterns and trends by exploring the potential of data-driven care approaches in addressing public health challenges associated with infectious diseases. The research methods used are exploratory data collection and analytical model development. The research results obtained mathematical models and algorithms that consider data of period, time, patterns, and trends of dangerous diseases, statistical analysis, and recommendations. Data visualisation and in-depth analysis were conducted in the research to improve the ability to respond to infectious disease threats and provide better decision-making solutions in improving outbreak response, as well as improving preparedness in addressing public health challenges. This research contributes to health practitioners and decision-makers.
Robust learning and optimization in distributionally robust stochastic variational inequalities under uncertainty Sihotang, Hengki Tamando; Michaud, Patrisius; Teresa, Patrys
International Journal of Enterprise Modelling Vol. 17 No. 1 (2023): Jan: Enterprise Modelling
Publisher : International Enterprise Integration Association

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (519.605 KB) | DOI: 10.35335/emod.v17i1.70

Abstract

Robust learning and optimization in distributionally robust stochastic variational inequalities under uncertainty is a crucial research area that addresses the challenge of making optimal decisions in the presence of distributional ambiguity. This research explores the development of methodologies and algorithms to handle uncertainty in variational inequalities, incorporating a distributionally robust framework that considers a range of possible distributions or uncertainty sets. By minimizing the worst-case expected performance across these distributions, the proposed approaches ensure robustness and optimality in decision-making under uncertainty. The research encompasses theoretical analysis, algorithm development, and empirical evaluations to demonstrate the effectiveness of the proposed methodologies in various domains, such as portfolio optimization and supply chain management. The outcomes of this research contribute to the advancement of robust optimization techniques, enabling decision-makers to make reliable and robust decisions in complex real-world systems
Data-driven corporate growth: A dynamic financial modelling framework for strategic agility Sihotang, Hengki Tamando; Vinsensia, Desi; Riandari, Fristi; Chandra, Suherman
International Journal of Basic and Applied Science Vol. 13 No. 2 (2024): Sep: Basic and Applied Science
Publisher : Institute of Computer Science (IOCS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35335/ijobas.v13i2.485

Abstract

This research aimed to develop a Dynamic Financial Growth Model (DFGM) to enhance corporate growth by promoting strategic agility through data-driven decision-making. The main objective was to optimize corporate value by integrating real-time data, dynamic decision-making, risk management, and scenario analysis. The research employed a mathematical modelling framework that combined predictive analytics, real options theory, and scenario-based optimization to represent dynamic corporate financial decisions. The numerical example demonstrated how the model adjusts strategic decisions in response to changes in market data and evaluates corporate value under optimistic, pessimistic, and baseline scenarios. The main results indicated that the DFGM is effective in optimizing corporate value by allowing for continuous adjustments and strategic flexibility, distinguishing itself from traditional static financial models that lack real-time adaptability. The findings highlighted the value of incorporating risk constraints and scenario analysis, resulting in a balanced approach that manages both growth and uncertainty. However, the study identified limitations, including the need for empirical validation, more complex predictive analytics, and accounting for behavioral factors affecting decision-making. The conclusion emphasizes that the DFGM provides an adaptable and data-driven framework that enhances corporate strategic agility, making it a valuable tool for managing growth in rapidly changing environments, while also suggesting future research to refine the model's practical application
Development of stable qubits and error correction in quantum computer architecture for superconducting quantum processors Sihotang, Hengki Tamando; Siringoringo , Rimmar; Riandari, Fristi; Song , Jiang Lou; Sim, Lee Choi
Journal of Computer Science and Research (JoCoSiR) Vol. 1 No. 4 (2023): Oct: Computing Quantum and Related Fields
Publisher : Asosiasi Perguruan Tinggi Informatika dan Ilmu Komputer (APTIKOM) Provinsi Sumatera Utara

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.65126/jocosir.v1i4.27

Abstract

A comprehensive mathematical model formulation is presented, encompassing gate fidelity optimization, coherence time extension, stabilizer code evolution, and surface code implementation. The research demonstrates significant advancements in qubit stability, with a 7% increase in gate fidelity and a remarkable 50% extension in coherence time achieved through optimized gate operations and material improvements. Quantum error correction techniques, guided by the Lindblad master equation and the surface code, result in a 25% reduction in error rates, contributing to the overall stability of the quantum processor. The outcomes not only bring practical quantum computing closer to realization but also provide a foundation for future innovations. The research identifies avenues for continued optimization, including advanced gate designs, exploration of emerging qubit technologies, and the development of sophisticated error correction codes. Further interdisciplinary collaborations and investigations into scalable quantum architectures, materials science, and cryogenic engineering are essential for overcoming remaining challenges. The insights gained contribute to the advancement of fault-tolerant quantum computing systems, offering transformative capabilities for computation and technology.
Graph-based Exploration for Mining and Optimization of Yields (GEMOY Method) Sihotang, Hengki Tamando; Riandari, Fristi; Sihotang , Jonhariono
Jurnal Teknik Informatika C.I.T Medicom Vol 16 No 2 (2024): May: Intelligent Decision Support System (IDSS)
Publisher : Institute of Computer Science (IOCS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35335/cit.Vol16.2024.777.pp70-81

Abstract

This research explores the application of graph-based optimization techniques to enhance yield management and minimize transportation costs in industrial operations, particularly focusing on mining. By representing mining sites and processing plants as nodes and transportation routes as edges in a graph, we formulated an optimization problem aimed at maximizing yields while minimizing associated costs. Utilizing linear programming, we demonstrated significant cost savings, reducing transportation costs from 2100 units to 1700 units through optimized flow distribution. The study integrates elements of graph theory, optimization algorithms, and machine learning, providing a robust framework for efficient resource allocation and operational planning. The numerical example underscores the practical applicability of these techniques, paving the way for further research and refinement to accommodate additional constraints and dynamic changes in resource availability. This research highlights the potential of graph-based methods to achieve substantial economic and operational improvements across various industrial contexts.
Optimizing supply chain efficiency: Advanced decision support systems for enhanced performance Judijanto, Loso; Lemos, Sgarbossa Carlo; Sihotang , Jonhariono; Sihotang , Hengki Tamando
Jurnal Teknik Informatika C.I.T Medicom Vol 16 No 3 (2024): July: Intelligent Decision Support System (IDSS)
Publisher : Institute of Computer Science (IOCS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35335/cit.Vol16.2024.857.pp185-198

Abstract

This research investigates the optimization of supply chain efficiency through the application of advanced Decision Support Systems (DSS), focusing on minimizing operational costs while maintaining high service levels. The main objective is to explore how DSS, integrated with real-time data, artificial intelligence (AI), and machine learning (ML), can enhance decision-making processes across production, inventory management, and transportation. The research employs a multi-objective optimization model, developed to minimize production, inventory, transportation, and shortage costs, while dynamically adjusting decisions based on real-time demand and supply data. A numerical example is used to test the model’s effectiveness, revealing significant cost reductions in production and transportation but highlighting challenges in maintaining consistent service levels. The results indicate that DSS can substantially improve supply chain efficiency by enabling data-driven decisions in real time, though its adoption remains limited by technical and scalability challenges, particularly for small-to-medium enterprises (SMEs). This study contributes to the growing body of knowledge on supply chain optimization, offering practical insights into DSS implementation and its potential impact on operational performance. The conclusions suggest that future research should focus on developing more sophisticated DSS models capable of handling uncertainty, sustainability, and resilience, as well as enhancing scalability to make DSS more accessible to a broader range of businesses.
Advancing Decision-Making: AI-Driven Optimization Models for Complex Systems Sihotang, Hengki Tamando; Sihotang, Jonhariono; Simbolon, Agata Putri Handayani; Panjaitan, Firta Sari; Simbolon, Roma Sinta
International Journal of Basic and Applied Science Vol. 13 No. 3 (2024): Dec: Optimization and Artificial Intelligence
Publisher : Institute of Computer Science (IOCS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35335/ijobas.v13i3.581

Abstract

Effective decision-making in complex systems requires optimization models that balance multiple competing objectives, such as cost efficiency, time constraints, and adaptability to dynamic environments. This research proposes an AI-driven optimization model utilizing the Pareto optimization algorithm to enhance decision-making accuracy and system resilience. The model was tested in a logistics scenario, demonstrating a 10% reduction in operational costs and a 36% decrease in time deviations while improving adaptability to real-time disruptions. Unlike traditional static models, the proposed framework dynamically adjusts to external factors, optimizing resource allocation and route planning in real-world conditions. The findings highlight the model’s capability to bridge the gap between theoretical AI advancements and practical applications in industries such as supply chain management, urban transportation, and disaster response logistics. While computational requirements and data availability pose challenges, future research should explore computational efficiency enhancements, broader industry applications, and sustainability integration. This study contributes to the advancement of AI-based multi-objective optimization, providing a scalable and adaptable solution for complex decision-making in dynamic environments
Co-Authors Achiriani, Tri Wahyuningtiyas Agustina Simangunsong Aisyah Alesha Aisyah Alesha Alrasyid, Wildan Amri, Siskawati Anthoni Anggrawan Anthony Anggrawan Bambang Saras Yulistiawan Bosker Sinaga Budi Arif Dermawan Calvin Berkat Iman Hulu Chandra, Suherman Dadang Pyanto Delano, Aldrich Desi Vinsensia Dini Anggraini Dwiki Rivaldo Naidu Efendi, Syahril Elpridawati Purba Endang Mistaorina Laia Erwin Panggabean Fadiel Rahmad Hidayat Firmansyah Firmansyah Fransisco alexander Simbolon Fristi Riandari Guntur Syahputra Harapan Lumbantoruan Harapan Lumbantoruan Harpingka Fitria Br. Sibarani Harpingka Fitriai Br. Sibaran Hasugian , Paska Marto Herlina Zebua Herman Mawengkang Husain Husain Hutahaean, Harvei Desmon Jacob, Halburt Jane Irma Sari Jelita Sari Simanungkalit Jijon Raphita Sagala Joan De Mathew Jonhariono Sihotang Jonhariono Sihotang Judijanto, Loso Kouvelis Geovany Ortizan Laia, Endang Mistaorina Lemos, Sgarbossa Carlo Maria Santauli Siboro Martinus Ndruru Melda Agustina Nababan Michaud, Patrisius Mochamad Wahyudi Muhammad Rafli Muhammad Zarlis Mulianingtyas , RR Octanty Mulianingtyas, RR Octanty Murni Marbun Normi Verawati Marbun Panjaitan, Firta Sari Patricius Michaud Felix Patrisia Teresa Marsoit Pilisman Buulolo Pujiastuti, Lise R. Mahdalena Simanjorang Rasenda, Rasenda Rifka Widyastuti, Rifka Ririn Pebrina Br. Marpaung Rizky A, Galih Prakoso Rizky, Galih Prakoso Rohit Gautama Roma Sinta Simbolon Rosulastri Purba Santiwati Sihotang Santoso, Heroe Sethu Ramen Sihotang , Jonhariono Sihotang, Jonhariono Sim, Lee Choi Simbolon, Agata Putri Handayani Simbolon, Roma Sinta Simbolon, Romasinta Siringoringo, Rimmar Siskawati Amri Sitio, Arjon Samuel Song , Jiang Lou Sri Devi Sulindawaty, Sulindawaty Tarisa Tarigan Teresa, Patrys Vina Winda Sari Vinsensia, Desi Widyastuti , Rifka