Claim Missing Document
Check
Articles

Found 25 Documents
Search

Perengkahan Katalitik Distilat Asam Lemak Minyak Sawit (DALMs) menggunakan Katalis HCl Berpenyangga Gamma Alumina Rismawati Rasyid; Alda Titania Dewanti; Rahmania Malik; Anshariah Anshariah; Ruslan Kalla
Journal of Chemical Process Engineering Vol 7, No 2 (2022)
Publisher : Universitas Muslim Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33536/jcpe.v7i2.1401

Abstract

Distilat asam lemak minyak sawit merupakan hasil samping dari pengolahan minyak sawit yang masih mengandung asam lemak bebas sehingga berpotensi sebagai bahan baku energi alternatif. Tidak dapat dipungkiri bahwa ketergantungan akan bahan bakar fosil semakin hari semakin meningkat, sedangkan bahan bakar fosil tidak dapat diperbaharui. Hal inilah yang mendorong para peneliti mengembangkan riset terkait bahan baku terbarukan dan metode terbaik untuk menghasilkan bahan bakar alternatif. Salah satu metode pembuatan biofuel adalah perengkahan katalitik yang menghasilkan beberapa produk biofuel, yaitu biogasoline (C5–C11), biokerosin (C12–C15) dan biodiesel (C16–C20). Tujuan dari penelitian ini adalah mengetahui pengaruh konsentrasi katalis HCl/g-Al2O3­ (1, 3, 5 dan 7)% dan HCl/Ni/g-Al2O3­ (1, 3, 5 dan 7)% terhadap produk biofuel hasil perengkahan katalitik distilat asam lemak minyak sawit (DALMs). Reaksi perengkahan katalitik dioperasikan pada suhu konstan 370oC, tekanan 1 atm dan volume reaktan 50 ml. Rendemen tertinggi diperoleh sebesar 80% dengan menggunakan katalis HCl/g-Al2O3­ (1%) ; selektivitas terhadap biogasoline (C5–C11) 5,27%, biokerosin (C12–C15) 30,4%, dan biodiesel (C16–C20) 28,79%. Perolehan nilai rendemen yang sama juga diperoleh dengan menggunakan katalis HCl/Ni/g-Al2O3­ (1%) yaitu sebesar 80%; selektivitas terhadap biogasoline (C5–C11) 4,51%, biokerosin (C12–C15) 28%, dan biodiesel (C16–C20) 37,3%.
Konversi Gliserol (Hasil Samping Proses Biodiesel) menjadi Akrolein dengan Metode Gelombang Ultrasonik Isran Asnawi; Ruslan Kalla; Rismawati Rasyid
Majalah Teknik Industri Vol 29 No 2 (2021): Majalah Teknik Industri Desember 2021
Publisher : Unit Penelitian dan Pengabdian Masyarakat (UPPM) Politeknik ATI Makassar

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Proses biodiesel menghasilkan limbah berupa crude gliserol. Crude gliserol tersebut merupakan peluang untuk dikembangkan menjadi produk gliserol komersil melalui proses pemurnian. Gliserol ini kemudian dapat dikonversi menjadi produk lain yang bernilai tambah, salah satunya adalah akrolein. Mengingat tingginya permintaan akrolein di Indonesia, maka pada penelitian ini bertujuan untuk mengonversi gliserol menjadi akrolein menggunakan metode gelombang ultrasonik dari bahan baku limbah biodiesel. Limbah biodiesel yaitu crude gliserol terlebih dahulu dimurnikan dengan metode pengasaman, adsorpsi, dan penguapan. Hasil pemurnian kemudian dilanjutkan pada proses konversi menjadi produk akrolein dan dilakukan analisa konversi gliserol dan analisa yield akrolein. Pemurnian tersebut menghasilkan gliserol dengan kadar 86,15%. Gliserol tersebut kemudian dikonversi menjadi akrolein menggunakan gelombang ultrasonik dengan parameter proses adalah massa gliserol-air 1:8, katalis H2SO4 1%, waktu proses 20-40 menit, dan suhu 30-60 oC. Hasil parameter proses terbaik diperoleh pada kondisi suhu 60 oC dan waktu sonikasi 40 menit dengan perolehan nilai konversi sebesar 50,69% dan yield akrolein sebesar 11,3%.
Triglycerides Hydrocracking Reaction of Nyamplung Oil with Non-sulfided CoMo/γ-Al2O3 Catalysts Rismawati Rasyid; Rahmaniah Malik; Heri Septya Kusuma; Achmad Roesyadi; Mahfud Mahfud
Bulletin of Chemical Reaction Engineering & Catalysis 2018: BCREC Volume 13 Issue 2 Year 2018 (August 2018)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.13.2.734.196-203

Abstract

The purpose of this research are to study the temperature influence in hydrocracking process of the nyamplung oil (Calophyllum inophyllum) using a non-sulfided CoMo/γ-Al2O3 catalyst and to develop a simple kinetic model in interpreting the data of hydrocracking products. The experiment was carried out in a pressurized batch reactor operated pressure up 30 bar. The CoMo catalyst supported with γ-Al2O3 was prepared through impregnation method without sulfidation process. The operating temperature varied from 200 to 350 oC. The results show that the non-sulfided CoMo/γ-Al2O3 catalysts, nyamplung oil triglycerides can converted into gasoil and gasoline-like hydrocarbons. The triglyceride hydrocracking reaction of nyamplung oil followed a several stages, i.e., hydrogenation, dehydrogenation, and cracking. Based on the compounds contained in liquid product, hydrocracking reaction was dominated by decarboxylation. The products obtained in hydrocracking process of nyamplung oil are classified to gasoil (C11-C18) and gasoline (C5-C10).  The triglycerides hydrocracking reaction of nyamplung oil was assumed by following a series reaction mechanism and a simple kinetic model used for determined the kinetics constants. The highest reaction conversion is 99.10% obtained at temperature of 350 °C for 160 minutes reaction time. 
UJI CO-FIRING BAHAN BAKAR SEMI RENEWABLE CAMPURAN BATUBARA DAN LIMBAH SERBUK GERGAJI BATANG KELAPA Sadul, Alvira; Aladin, Andi; Rasyid, Rismawati
Journal of Scientech Research and Development Vol 6 No 1 (2024): JSRD, June 2024
Publisher : Ikatan Dosen Menulis

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.56670/jsrd.v6i1.298

Abstract

The present study delves into the current exploration and research surrounding alternative energy sources, particularly the utilization of agricultural waste biomass as a potential fuel. Specifically, the study investigates the viability of coconut stem sawdust, a prevalent agricultural byproduct, as a supplementary energy source. The calorific value of coconut stem sawdust is established at 4304 Kcal/kg. This biomass material is then subjected to blending with coal, characterized by a calorific value of 5761 Kcal/kg, for application in a steam power generation facility. Prior to its integration into the co-firing process, the coconut sawdust undergoes a preparatory phase where it is divided into two distinct samples: untreated sawdust and sawdust derived from pyrolyzed coconut stems. Pyrolysis, facilitated by nitrogen gas at a flow rate of 2L/minute, yields charcoal with an enhanced calorific value of 6735 Kcal/kg. The primary aim of this research is twofold: first, to ascertain the optimal blend ratio of biomass and coal for co-firing, and second, to delineate the characteristics of the resultant co-firing mixture. The investigation reveals that the optimal blend ratio for co-firing stands at 10%, resulting in a calorific value of 5652 Kcal/kg. Furthermore, this ratio engenders a noteworthy reduction in sulphur content, decreasing from 0.805% to 0.453%, thereby satisfying the operational sulphur limit of <1% for power generation. Similarly, the optimal co-firing ratio for pyrolyzed coconut stem biomass is also found to be 10%, as its calorific value reaches 5852 Kcal/kg, aligning with the operational specifications stipulated for the boiler.
Perengkahan Katalitik Distilat Asam Lemak Minyak Sawit (DALMs) Menggunakan Katalis HCl Berpenyangga γ-Al2O3 Rasyid, Rismawati; Dewanti, Alda Titania; Malik, Rahmaniah; Anshariah, Anshariah; Kalla, Ruslan
Journal of Chemical Process Engineering Vol. 7 No. 2 (2022): Journal of Chemical Process Engineering
Publisher : Fakultas Teknologi Industri - Universitas Muslim Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33536/jcpe.v7i2.792

Abstract

Distilat asam lemak minyak sawit merupakan hasil samping dari pengolahan minyak sawit yang masih mengandung asam lemak bebas sehingga berpotensi sebagai bahan baku energi alternatif. Tidak dapat dipungkiri bahwa ketergantungan akan bahan bakar fosil semakin hari semakin meningkat, sedangkan bahan bakar fosil tidak dapat diperbaharui. Hal inilah yang mendorong para peneliti mengembangkan riset terkait bahan baku terbarukan dan metode terbaik untuk menghasilkan bahan bakar alternatif. Salah satu metode pembuatan biofuel adalah perengkahan katalitik yang menghasilkan beberapa produk biofuel, yaitu biogasoline (C5–C11), biokerosin (C12–C15) dan biodiesel (C16–C20). Tujuan dari penelitian ini adalah mengetahui pengaruh konsentrasi katalis HCl/γ-Al2O3 (1, 3, 5 dan 7)% dan HCl/Ni/γ-Al2O3 (1, 3, 5 dan 7)% terhadap produk biofuel hasil perengkahan katalitik distilat asam lemak minyak sawit (DALMs). Reaksi perengkahan katalitik dioperasikan pada suhu konstan 370oC, tekanan 1 atm dan volume reaktan 50 ml. Rendemen tertinggi diperoleh sebesar 80% dengan menggunakan katalis HCl/γ-Al2O3 (1%) ; selektivitas terhadap biogasoline (C5–C11) 5,27%, biokerosin (C12–C15) 30,4%, dan biodiesel (C16–C20) 28,79%. Perolehan nilai rendemen yang sama juga diperoleh dengan menggunakan katalis HCl/Ni/γ-Al2O3 (1%) yaitu sebesar 80%; selektivitas terhadap biogasoline (C5–C11) 4,51%, biokerosin (C12–C15) 28%, dan biodiesel (C16–C20) 37,3%.
Pemanfaatan Lignin Dari Limbah Kulit Buah Coklat Sebagai Adsorben Logam (Cu) Dengan Penambahan CaCO3 Deritawati; Waliyadin; Rasyid, Rismawati; Nurjannah
Journal of Chemical Process Engineering Vol. 2 No. 2 (2017): Journal of Chemical Process Engineering
Publisher : Fakultas Teknologi Industri - Universitas Muslim Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33536/jcpe.v2i2.889

Abstract

Logam Cu dalam konsentrasi tertentu dapat memberikan efek toksik yang berbahaya bagi kehidupan manusia dan lingkungan di sekitarnya. Salah satu cara sederhana dan ekonomis yang dapat dilakukan untuk menyerap logam Cu dengan cara adsorpsi dengan menggunakan bahan berpori. Penelitian ini bertujuan untuk menentukan Waktu dan pH optimum pada proses penyerapan Cu oleh lignin. Sampel kulit Cacao didapatkan di Mamuju Sulawesi Barat, sampel diprepasi terlebih dahulu kemudian diektraksi dengan Benzen:Ethanol. Setelah itu lignin diisolasi menggunakan NaOH, kemudian diendapkan menggunakan H2SO4 sehingga didapatkan sampel lignin murni. Lignin yang telah dikeringkan dikontakkan dengan larutan Cu pada Variabel pH dan Waktu. Dari hasil penelitian menunjukkan bahwa pH dan waktu kontak berpengaruh terhadap banyaknya konsentrasi Cu yang diadsorsi oleh lignin. Semakin banyak waktu yang dikontakkan antara larutan Cu dan lignin maka semakin banyak pula Cu yang diadsorpsi oleh lignin. Sedangkan pH basa akan menyebabkan berkurangnya daya kerja adsorben dari lignin, dan lebih baik pada pH Asam. Penelitian dapat disimpulkan bahwa pH optimum pada proses penyerapan logam Cu oleh lignin ialah pada pH larutan 6. Waktu kontak optimum pada proses penyerapan logam Cu oleh lignin ialah pada waktu 40 Menit.
PENJERAPAN LOGAM BERAT TIMBAL (Pb) DENGAN MENGGUNAKAN LIGNIN HASIL ISOLASI JERAMI PADI Masruhin; Rismawati Rasyid; Syamsuddin Yani
Journal of Chemical Process Engineering Vol. 3 No. 1 (2018): Journal of Chemical Process Engineering
Publisher : Fakultas Teknologi Industri - Universitas Muslim Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33536/jcpe.v3i1.904

Abstract

Adsorpsi ion logam berat timbal (Pb) dengan menggunakan lignin hasil isolasi jerami padi telah dilakukan. Kemampuan lignin dari jerami padi untuk menyerap ion timbal telah dievaluasi dengan memvariasikan waktu adsorpsi dan pH larutan. Konsentrasi ion timbal diukur dengan spektrometer adsorpsi atom. Hasil menunjukkan bahwa kondisi optimum ion Timbal (Pb) oleh lignin dicapai pada saat adsorpsi 30 menit, pH larutan 5, dan konsentrasi tembaga dari 10 ppm dengan adsorpsi efisiensi 88,765%. Dalam penelitian ini, Diperoleh persamaan Langmuir 1/m = 0,007 1/C +0,016 dan persamaan Freundlich, Log m = 0,690 log C + 1,697.
Effectiveness of Mg(OH)2/γ-Al2O3 Catalysts on Catalytic Cracking Process Rasyid, Rismawati; Wiyani, Lastri; Ramadhan, Alif Qayyum; Ahmad, Muhammad Aslam
Journal of Chemical Process Engineering Vol. 9 No. 2 (2024): Journal of Chemical Process Engineering
Publisher : Fakultas Teknologi Industri - Universitas Muslim Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33096/jcpe.v9i2.878

Abstract

Petroleum is one of the energy sources that currently has very wide uses. In addition to the fact that petroleum is a non-renewable resource, the use of fuel oil has also affected emission levels. Biofuel is an alternative fuel in solid, liquid or gas form that can be obtained from animals, plants, or agricultural waste. The process of making biofuel can be done by several methods, namely by thermal cracking, hydrocracking, and catalytic cracking. Thermal cracking is a simple process where heat is used to cut long hydrocarbon chains. Catalytic cracking is the process of breaking hydrocarbon chains using a catalyst. This study aims to determine the effect of Mg(OH)2/γ-Al2O3 catalyst (2 and 6)% and to determine the effect of the ratio of Mg(OH)2/γ-Al2O3 catalyst (1, 2, 3 and 4)% on the yield and selectivity of biofuel products from catalytic cracking of palm oil. The process of making biofuel through catalytic cracking process using Mg(OH)2/ γ –Al2O3 catalyst as much as 1% of the volume of material with a temperature of 370℃ on a hotplate magnetic stirrer and reactor for ±3 hours. The biofuel results were analyzed by Gas Chromatography Mass Spectrophotometry (GCMS). The highest biogasoline was obtained using Mg(OH)2/γ-Al2O3 catalyst 2% with a ratio of 2% which was 16.6%. While the highest biodiesel was obtained using Mg(OH)2/γ-Al2O3 catalyst 6% with a ratio of 2% which was 42.7%.
Pengaruh gelombang mikro pada pembuatan biodiesel dan kualitas metil ester dari minyak goreng kelapa sawit dan minyak goreng kedelai menggunakan katalis naoh terhadap kualitas metil ester Faradillah, Husnah; Suryanto, Andi; Rasyid, Rismawati
Jurnal Teknik Industri Terintegrasi (JUTIN) Vol. 8 No. 1 (2025): January
Publisher : LPPM Universitas Pahlawan Tuanku Tambusai

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31004/jutin.v8i1.41705

Abstract

The use of microwaves in the biodiesel production process has been widely used because it has many advantages, one of which is showing a more efficient reaction, with a short reaction time and separation process. It is necessary to determine the effect of microwaves on the quality of biodiesel from palm oil and soybean oil. The aim of the research was to: 1) Evaluate the effect of power on the yield of palm oil and soybean oil biodiesel with a mole ratio of 1:12, reaction time of 2.5 minutes, and NaOH catalyst concentration of 0.2%. 2) Evaluate the effect of power on the characteristics of palm oil and soybean oil biodiesel with a mole ratio of 1:12, reaction time of 2.5 minutes, and NaOH catalyst concentration of 0.2%. 3) Evaluate the effect of power on the quality of palm oil and soybean oil biodiesel methyl ester compounds with a mole ratio of 1:12, reaction time of 2.5 minutes, and NaOH catalyst concentration of 0.2%. This research was carried out by preparing samples of oil, methanol, catalyst and distilled water. Followed by weighing the 0.2% catalyst and dissolving it with methanol and oil with a mole ratio of 1:12 then reacting with a microwave method transesterification reaction with power variations of 100, 264, 400 watts and a reaction time of 2.5 minutes. The results of transesterification produce biodiesel and glycerol. Biodiesel is separated for the purification process. The results of biodiesel purification are followed by physical and chemical testing. The results of this research show that: (1) The yield of palm oil biodiesel was 96% with a power of 400 watts and the yield of soybean oil biodiesel was 92% with a power of 400 watts. (2) The characteristics show that they are in accordance with SNI 7812:2015, except for water content. (3) The optimal % area of methyl ester obtained from palm oil biodiesel is 55.23% of 400 watt power and 37.38% of 264 watt power from soybean oil biodiesel.
Sifat fisik dan kimia mayones dari virgin coconut oil dan air kelapa Wiyani, Lastri; Rasyid, Rismawati; Nurjannah, N; Aladin, Andi; Nirma; Nurhalifa

Publisher : Program Studi Ilmu dan Teknologi Pangan, Universitas Yudharta, Pasuruan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35891/tp.v16i1.5993

Abstract

Mayonnaise is a form of emulsion that is widely used in food products, for example salads, meatballs, sausages, etc. Mayonnaise can be made by mixing vegetable oil and water with the addition of other components such as egg yolks, sugar, salt, mustard, lime and pepper. The addition of these ingredients will affect the characteristics of the mayonnaise produced. This research aims to determine the best concentration of sugar and mustard in mayonnaise from Virgin Coconut Oil and coconut water in terms of their physical and chemical propeties. Mayonnaise is made by mixing VCO and coconut water, xanthan gum, salt, lime, sugar and mustard. All ingredients were mixed using an ultra turrax tool at a speed of 15000 rpm for 4 minutes to form an emulsion. Variations were made regarding the addition of sugar (0%, 1%, 2%, 3%) and the addition of mustard (0.5%, 1%, 1.5%, 2% and 2.5%). The mayonnaise formed was analyzed for physical and chemical properties. The resulting mayonnaise is stable. The addition of sugar and mustard to mayonnaise will increase viscosity and pH but has no effect on stability and water content. Mayonnaise made with the addition of 3% sugar and 0.5% mustard has a carbohydrate content of 2.51%, a total plate count of 1.8×102 colonies/g in accordance with Indonesian National Standard (SNI) 01-4473-1998. However, the protein content (0.17%) and fat (43.19%) are lower than SNI, while the water content (53.34%) in mayonnaise is higher than SNI.