Claim Missing Document
Check
Articles

Found 5 Documents
Search
Journal : ComEngApp : Computer Engineering and Applications Journal

BLOB Analysis for Fruit Recognition and Detection Muhammad Dede Yusuf; RD Kusumanto; Yurni Oktarina; Tresna Dewi; Pola Risma
Computer Engineering and Applications Journal Vol 7 No 1 (2018)
Publisher : Universitas Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (682.192 KB) | DOI: 10.18495/comengapp.v7i1.237

Abstract

Robot application in agriculture can ease the farming process, especially as the harvesting robot for seasonal fruit that is available in a short time. The addition of "eye" as the image sensor is an important feature for a harvesting robot. Thanks to the increment of technology, the camera is getting smaller with better performance, and lower prices. The cheap sensors and components make the creation of cheap and effective robot possible. Image processing is necessary for object detection, and open source software is available now for this purpose. This paper proposes BLOB analysis for object detection of 5 fruits with different shapes and colors. The simulation results show that the proposed method is effective for object detection regardless the shapes, colors, and noises.
The Application of Push Button Switch as Inverse Kinematics Input on Adaptive Walking Method for Hexapod Robot Pola Risma; Muhammad Bagaskara; Nyayu Husni Latifah; Masayu Anisah; Adella Rialita
Computer Engineering and Applications Journal Vol 9 No 1 (2020)
Publisher : Universitas Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (547.481 KB) | DOI: 10.18495/comengapp.v9i1.313

Abstract

Any kinds of natural disaster are undesirable. Loss and damage are the most experienced as they come. Property and people have to be relieved, and it's not an easy matter. Among the deaths caused by buildings, some may still be alive and need helps as soon as possible, but this is too risky for the rescue team since the location is still in dangerous level. Therefore, we created the detector hexapod robot to replace the tasks of the rescue teams in searching for the victims of the disasters, so there are no more victims from the rescue team. The hexapod robot is a six-legged robot which shapes and runs like a spider. This research focuses on the analysis of the push button switch as a robotic foot control input. This is because walking technique is an effective major factor in navigation of robots. A good method is required to maintain the height of the robot's foot while it is walking. So to solve this, the push button switch application is used along with the inverse kinematics calculations on each routine program in adjusting the position of the end effector on the floor surface. In shifting, the navigation runs well without any failure if the position of the foot does not touch the floor. The test is done in 2 steps, comparing the inverse kinematics calculations with x and y inputs which are applied to the robot program code then comparing the travel time condition by using push button switch and without push button switch. The result of robot in this study can be re-developed in the future, using servos with greater torque and better control input than push button switch.
Finger Cue for Mobile Robot Motion Control Tresna Dewi; Amperawan Amperawan; Pola Risma; Yurni Oktarina; Dicky Astra Yudha
Computer Engineering and Applications Journal Vol 9 No 1 (2020)
Publisher : Universitas Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (593.467 KB) | DOI: 10.18495/comengapp.v9i1.319

Abstract

The current technology enables automation using a robot to help or substitute humans in industry and domestic applications. This robot invasion to human life emerges a new requirement to set a method of communication between a human and a robot. One of the oldest languages is finger gesture, and this is easy to be applied method by implementing image detection that connected to the actuators of the robot to respond to human orders. This paper presents a method to navigate robots based on human fingers cue, including "Forward," "Backward," "Turn right," "Turn left," and "Stop" to generate the forward, backward, turn right, turn left, and stop motion. The finger detection is facilitated by a camera module (NFR2401L) with the image plane of 640 x 480 and 30 fps speed. The detection in coordinates x <43 and y <100, robot moves forward, in x <29 and y <100-coordinates , robot turns left, and in x <19 and y <100-coordinates , robot turns right. The experiment was conducted to show the effectiveness of the proposed method, and to some extent robot can follow human cues to navigate in its assigned location.
The Concept of Automatic Transport System Utilizing Weight Sensor Yurni Oktarina; Tresna Dewi; Pola Risma
Computer Engineering and Applications Journal Vol 9 No 2 (2020)
Publisher : Universitas Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (579.424 KB) | DOI: 10.18495/comengapp.v9i2.339

Abstract

The current pandemic situation insists that people find a way to create a physical distance, limiting the number of people in a closed room. The human need for commuting has led to the idea of an automatic transport system that can transport people and goods without the assistance of a driver. This idea can lead to a new "normal" and reduced cost of manufacturing in the industry. The paper discussed the concept of an automatic transport system using a weight sensor. An automatic vehicle is designed to transport loads of different packages and be allocated automatically based on the weight of the package. The system is designed to be as simple as possible to increase the scope for implementation.
Neural Network Controller Application on a Visual based Object Tracking and Following Robot Risma, Pola; Dewi, Tresna; Oktarina, Yurni; Wijanarko, Yudi
Computer Engineering and Applications Journal Vol 8 No 1 (2019)
Publisher : Universitas Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (611.088 KB) | DOI: 10.18495/comengapp.v8i1.280

Abstract

Navigation is the main issue for autonomous mobile robot due to its mobility in an unstructured environment. The autonomous object tracking and following robot has been applied in many places such as transport robot in industry and hospital, and as an entertainment robot. This kind of image processing based navigation requires more resources for computational time, however microcontroller currently applied to a robot has limited memory. Therefore, effective image processing from a vision sensor and obstacle avoidances from distance sensors need to be processed efficiently. The application of neural network can be an alternative to get a faster trajectory generation. This paper proposes a simple image processing and combines image processing result with distance information to the obstacles from distance sensors. The combination is conducted by the neural network to get the effective control input for robot motion in navigating through its assigned environment. The robot is deployed in three different environmental setting to show the effectiveness of the proposed method. The experimental results show that the robot can navigate itself effectively within reasonable time periods.