Claim Missing Document
Check
Articles

Found 4 Documents
Search
Journal : Jurnal Buana Informatika

Klasifikasi Jenis Tanaman Mangga Gadung dan Mangga Madu Berdasarkan Tulang Daun Riska, Suastika Yulia; Cahyani, Laili; Rosadi, Muhammad Imron
Jurnal Buana Informatika Vol 6, No 1 (2015): Jurnal Buana Informatika Volume 6 Nomor 1 Januari 2015
Publisher : Universitas Atma Jaya Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (327.969 KB) | DOI: 10.24002/jbi.v6i1.399

Abstract

Daun merupakan salah satu bagian tanaman yang dapat menjadiacuan klasifikasi, karena memiliki perbedaan fitur pada setiap jenis mangga. Penerapan Unconstraint Hit or Miss Transformation (UHMT) dengan empatstructuring element (SE) mengakibatkan tingginya kompleksitas komputasional.Sehingga, penelitian ini bertujuan untuk menyederhanakan kompleksitaskomputasi dengan menerapkan satu dari sembilan SE pada UHMT. Pola fiturtulang daun diperoleh dengan menerapkan Local Binary Pattern (LBP),kemudian hasil fitur yang diperoleh dihitung dengan entropy. Hasilmenunjukkan bahwa rata-rata nilai entropy yang tinggi dikategorikan padamangga madu. Pengujian klasifikasi membandingkan akurasi pada K-foldCross Validation, dengan nilai K-fold adalah 5, 8, dan 10. Akurasi tertinggidengan menggunakan 10-fold Cross Validition yaitu 78,5 %.
Klasterisasi Jenis Musik Menggunakan Kombinasi Algoritma Neural Network, K-Means dan Particle Swarm Optimization Sankoh, Alhaji Sheku; Musthafa, Ahmad Reza; Rosadi, Muhammad Imron; Arifin, Agus Zainal
Jurnal Buana Informatika Vol 6, No 3 (2015): Jurnal Buana Informatika Volume 6 Nomor 3 Juli 2015
Publisher : Universitas Atma Jaya Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24002/jbi.v6i3.431

Abstract

Abstract. Having a number of audio files in a directory could result to unstructured arrangement of files. This will cause some difficulties for users in sorting a collection of audio files based on a particular category of music. In some previous studies, researchers used a method conducting to group documents on a web page. However, those studies were not carried out on file containing documents such as audio files; relatively they were conducted on files that contain text documents. In this study, we develop a method of grouping files using a combination of pre-processing approach, neural networks, k-means, and particle swarm optimization to obtain a form of audio file collections that are group based on the types of music. The result of this study is a system with improved method of grouping audio files based on the type of music. The pre-processing stage has therefore produced the best results on this approach based on spectrum analysis melody and bass guitar, which offers a value precision 95%, 100% recall and an F-Measure 97.44%.Keywords: Cluster, Music, NN, K-Means, PSO Abstrak. Banyaknya file audio pada suatu direktori membuat sususan file tidak terstruktur. Hal ini akan menyulitkan pengguna untuk mengurutkan bahkan memilah kumpulan file audio berdasarkan kategori tertentu, khususnya kategori berdasarkan jenis musik. Pada penelitian sebelumnya, dilakukan pengelompokan dokumen pada suatu halaman website. Namun hal tersebut tidak dilakukan pada file selain dokumen, seperti file audio. Penelitian ini bertujuan untuk mengembangkan metode pengelompokan file berupa kombinasi pendekatan pre-processing, neural network, k-means, dan particle swarm optimization dengan masukan berupa file audio sehingga diperoleh keluaran berupa kumpulan file audio yang telah terkelompok berdasarkan jenis musik. Hasil dari penelitian ini yaitu berupa suatu sistem dengan pengembangan metode dalam pengelompokan file audio berdasarkan jenis musik. Metode pada tahap pre-processing memiliki hasil terbaik pada pendekatan berdasarkan analisa spectrum melodi gitar dan bass, di mana memiliki nilai precission 95%, recall 100% dan F-Measure 97,44%. Kata kunci: Klaster, Musik, NN, K-Means, PSO
Klasifikasi Jenis Tanaman Mangga Gadung dan Mangga Madu Berdasarkan Tulang Daun Suastika Yulia Riska; Laili Cahyani; Muhammad Imron Rosadi
Jurnal Buana Informatika Vol. 6 No. 1 (2015): Jurnal Buana Informatika Volume 6 Nomor 1 Januari 2015
Publisher : Universitas Atma Jaya Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24002/jbi.v6i1.399

Abstract

Daun merupakan salah satu bagian tanaman yang dapat menjadiacuan klasifikasi, karena memiliki perbedaan fitur pada setiap jenis mangga. Penerapan Unconstraint Hit or Miss Transformation (UHMT) dengan empatstructuring element (SE) mengakibatkan tingginya kompleksitas komputasional.Sehingga, penelitian ini bertujuan untuk menyederhanakan kompleksitaskomputasi dengan menerapkan satu dari sembilan SE pada UHMT. Pola fiturtulang daun diperoleh dengan menerapkan Local Binary Pattern (LBP),kemudian hasil fitur yang diperoleh dihitung dengan entropy. Hasilmenunjukkan bahwa rata-rata nilai entropy yang tinggi dikategorikan padamangga madu. Pengujian klasifikasi membandingkan akurasi pada K-foldCross Validation, dengan nilai K-fold adalah 5, 8, dan 10. Akurasi tertinggidengan menggunakan 10-fold Cross Validition yaitu 78,5 %.
Klasterisasi Jenis Musik Menggunakan Kombinasi Algoritma Neural Network, K-Means dan Particle Swarm Optimization Alhaji Sheku Sankoh; Ahmad Reza Musthafa; Muhammad Imron Rosadi; Agus Zainal Arifin
Jurnal Buana Informatika Vol. 6 No. 3 (2015): Jurnal Buana Informatika Volume 6 Nomor 3 Juli 2015
Publisher : Universitas Atma Jaya Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24002/jbi.v6i3.431

Abstract

Abstract. Having a number of audio files in a directory could result to unstructured arrangement of files. This will cause some difficulties for users in sorting a collection of audio files based on a particular category of music. In some previous studies, researchers used a method conducting to group documents on a web page. However, those studies were not carried out on file containing documents such as audio files; relatively they were conducted on files that contain text documents. In this study, we develop a method of grouping files using a combination of pre-processing approach, neural networks, k-means, and particle swarm optimization to obtain a form of audio file collections that are group based on the types of music. The result of this study is a system with improved method of grouping audio files based on the type of music. The pre-processing stage has therefore produced the best results on this approach based on spectrum analysis melody and bass guitar, which offers a value precision 95%, 100% recall and an F-Measure 97.44%.Keywords: Cluster, Music, NN, K-Means, PSO Abstrak. Banyaknya file audio pada suatu direktori membuat sususan file tidak terstruktur. Hal ini akan menyulitkan pengguna untuk mengurutkan bahkan memilah kumpulan file audio berdasarkan kategori tertentu, khususnya kategori berdasarkan jenis musik. Pada penelitian sebelumnya, dilakukan pengelompokan dokumen pada suatu halaman website. Namun hal tersebut tidak dilakukan pada file selain dokumen, seperti file audio. Penelitian ini bertujuan untuk mengembangkan metode pengelompokan file berupa kombinasi pendekatan pre-processing, neural network, k-means, dan particle swarm optimization dengan masukan berupa file audio sehingga diperoleh keluaran berupa kumpulan file audio yang telah terkelompok berdasarkan jenis musik. Hasil dari penelitian ini yaitu berupa suatu sistem dengan pengembangan metode dalam pengelompokan file audio berdasarkan jenis musik. Metode pada tahap pre-processing memiliki hasil terbaik pada pendekatan berdasarkan analisa spectrum melodi gitar dan bass, di mana memiliki nilai precission 95%, recall 100% dan F-Measure 97,44%. Kata kunci: Klaster, Musik, NN, K-Means, PSO