p-Index From 2021 - 2026
7.296
P-Index
This Author published in this journals
All Journal ComEngApp : Computer Engineering and Applications Journal Syntax Jurnal Informatika Jurnal Ilmu Komputer dan Agri-Informatika SITEKIN: Jurnal Sains, Teknologi dan Industri Jurnal Informatika Jurnal CoreIT JURNAL MEDIA INFORMATIKA BUDIDARMA JIEET (Journal of Information Engineering and Educational Technology) Indonesian Journal of Artificial Intelligence and Data Mining Seminar Nasional Teknologi Informasi Komunikasi dan Industri JURNAL INSTEK (Informatika Sains dan Teknologi) Jurnal Informatika Universitas Pamulang Sebatik Jurnal Teknoinfo ICETIA Jurnal Nasional Komputasi dan Teknologi Informasi IJISTECH (International Journal Of Information System & Technology) JURIKOM (Jurnal Riset Komputer) Informatika : Jurnal Informatika, Manajemen dan Komputer Building of Informatics, Technology and Science Zonasi: Jurnal Sistem Informasi Jurnal Informatika Ekonomi Bisnis Jurnal Tekinkom (Teknik Informasi dan Komputer) JOURNAL OF INFORMATION SYSTEM RESEARCH (JOSH) Journal of Computer System and Informatics (JoSYC) Jurnal Sistem Komputer dan Informatika (JSON) JUKI : Jurnal Komputer dan Informatika IJISTECH Information System Journal (INFOS) Bulletin of Computer Science Research KLIK: Kajian Ilmiah Informatika dan Komputer JUSTIN (Jurnal Sistem dan Teknologi Informasi) Bulletin of Information Technology (BIT) Knowbase : International Journal of Knowledge in Database Malcom: Indonesian Journal of Machine Learning and Computer Science Jurnal Sains dan Informatika : Research of Science and Informatic Jurnal Informatika Ekonomi Bisnis
Claim Missing Document
Check
Articles

A Support Vector Regression Approach for Predicting the Remaining Useful Life of Turbofan Engines Hardiansyah, Muhammad Vio; Insani (Scopus ID: 57190404820), Fitri; Handayani, Lestari; Jasril, Jasril; Sanjaya, Suwanto
Jurnal CoreIT: Jurnal Hasil Penelitian Ilmu Komputer dan Teknologi Informasi Vol 11, No 2 (2025): December 2025
Publisher : Fakultas Sains dan Teknologi, Universitas Islam Negeri Sultan Syarif Kasim Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24014/coreit.v11i2.38532

Abstract

Turbofan engines are crucial components in the aviation and manufacturing industries, where estimating the Remaining Useful Life (RUL) has a significant impact on operational efficiency and safety. This study aims to predict the RUL of turbofan engines using the Support Vector Regression (SVR) method, a machine learning approach that has proven effective in modeling nonlinear relationships between variables. Operational data related to turbofan engines include operational parameters, sensors, and maintenance records. The initial stage of this research involves data analysis based on unit number, time, operational control, and sensor parameters. This process begins with preprocessing to initialize the initial data values, normalize, and select sensors that have stagnant values, as these sensors do not affect the machine learning system. Subsequently, regression calculations are performed to compare predicted values and actual values using the Support Vector Regression method optimized with Grid Search Optimization. In this study, testing was conducted with Parameters C [1, 10, 50, 100] and ε [1, 5, 10, 50], resulting in the best model with an RMSE error of 19.56 and MAE of 14.73.
Analisis Clustering Menggunakan Metode K-Means untuk Mengidentifikasi Pola Kepuasan Alumni: Clustering Analysis Using the K-Means Method to Identify Alumni Satisfaction Pattern Ramadhan, Muhammad Ilham; Nazir, Alwis; Irsyad, Muhammad; Sanjaya, Suwanto; Syafria, Fadhilah
MALCOM: Indonesian Journal of Machine Learning and Computer Science Vol. 6 No. 1 (2026): MALCOM January 2026
Publisher : Institut Riset dan Publikasi Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.57152/malcom.v6i1.2401

Abstract

Tracer study berperan penting dalam mengevaluasi kualitas layanan pendidikan berdasarkan pengalaman alumni. Analisis kepuasan alumni terhadap fasilitas pembelajaran umumnya masih terbatas pada statistik deskriptif, sehingga belum mampu mengungkap pola kepuasan secara tersegmentasi pada data berskala besar. Penelitian ini bertujuan untuk mengidentifikasi pola segmentasi kepuasan alumni terhadap fasilitas pembelajaran di Universitas Islam Negeri Sultan Syarif Kasim Riau (UIN Suska Riau) sebagai indikator penting dalam evaluasi kualitas layanan pendidikan. Metode yang digunakan adalah K-Means Clustering, diimplementasikan melalui tahapan Knowledge Discovery in Database (KDD) pada 6.508 data tracer study alumni S1 lulusan 2010–2023. Proses preprocessing mencakup normalisasi data numerik menggunakan Min-Max Scaling untuk menyamakan skala enam indikator kepuasan (Perpustakaan, Teknologi Informasi, Modul Belajar, Ruang Belajar, Laboratorium, dan Variasi Mata Kuliah), sehingga meminimalkan bias dalam perhitungan jarak Euclidean. Berdasarkan Elbow Method, diperoleh jumlah klaster optimal adalah K=3, dan kualitas pengelompokan divalidasi dengan nilai Davies-Bouldin Index (DBI) sebesar 0,874, mengonfirmasi stabilitas klaster yang terbentuk. Analisis menghasilkan tiga klaster berbeda: Klaster 0 (Tingkat Kepuasan Tinggi) yang dominan, Klaster 1 (Tingkat Kepuasan Rendah), dan Klaster 2 (Tingkat Kepuasan Sangat Tinggi). Hasil ini memberikan segmentasi kepuasan yang eksplisit sebagai dasar bagi universitas untuk merumuskan strategi peningkatan fasilitas secara terarah dan berkelanjutan.
Co-Authors Abdussalam Al Masykur Adrian Maulana Afiana Nabilla Zulfa Ahmad Fauzan Ahmad Paisal Ahmad, Rizmah Zakiah Nur Al Fiqri, M. Faiz Alwis Nazir Alwis Nazir Alwis Nazir Alwiz Nazir Amalia Hanifah Artya Annisa Putri Aqilah, M Alfandri Arif Mudi Priyatno Ariq At-Thariq Putra Aulia Ramadhani Baehaqi Cut Lira Kabaatun Nisa Darmila Deny Ardianto Dodi Efendi efni humairah Eka Pandu Cynthia Elin Haerani Elvia Budianita Erni Rouza, Erni Ersad Alfarsy Absar, Ersad Alfarsy Fadhilah Syafria Fadhilla Syafria Fakhrezi, Muhammad Dzaki Febi Yanto Felian Nabila Fitri Insani Fitri Insani Fitri Insani (Scopus ID: 57190404820) Fitri, Dina Deswara Gusrifaris Yuda Alhafis Gusti, Siska Kurnia Hafez Almirza Hardiansyah, Muhammad Vio Harni, Yulia Hartini Hartini Iis Afrianty Iis Afrianty Ikhwanul Akhmad DLY Insani (Scopus ID: 57190404820), Fitri Irman Hermadi Isnan Mellian Ramadhan Israldi, Tino Iwan Iskandar Iwan Iskandar Jasril Jasril Jasril Jasril Jasril Jasril Karina Julita Kurnia Rahman, Fikri Kurniawan, Saifur Yusuf Lestari Handayani Lestari Handayani Lestari Handayani Lia Anggraini Lola Oktavia M. Fadil Martias Masaugi, Fathan Fanrita Maulana Junihardi Mazdavilaya, T Kaisyarendika Megawati Megawati Morina Lisa Pura Muhammad Affandes Muhammad Fikry Muhammad Irfan Syah Muhammad Irsyad Muhammad Irsyad Nabyl Alfahrez Ramadhan Amril Nazir, Alwis Nazruddin Safaat Nazruddin Safaat H Negara, Benny Sukma Novi Yanti Novriyanto Novriyanto Novriyanto Pangestu, Yoga Pizaini Pizaini Puspa Melani Almahmuda Putri Ayuni, Desy Radili, Adi Rahma Shinta Rahmad Abdillah Rahmad Abdillah Ramadhan, Muhammad Ilham Ramu Will Sandra Reski Mai Candra Reski Mai Candra Reski Mei Candra Riska Yuliana Saputra, Nugroho Wahyu Sarah Lasniari Sarah Lasniari Shahira, Fayza Sugandi, Hatami Karsa SURYA ADITYA GD Surya Agustian Syaputra, Muhammad Dwiky Ulfah Adzkia Vitriani, Yelfi Yani, Susmi Syahfrida Yelfi Vitriani Yeni Fariati Yusra Yusra, Yusra Yusril Hidayat