Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : Journal of Applied Data Sciences

Novel Predictive Framework for Student Learning Styles Based on Felder-Silverman and Machine Learning Model Maulana Baihaqi, Wiga; Eko Saputro, Rujianto; Setyo Utomo, Fandy; Sarmini, Sarmini
Journal of Applied Data Sciences Vol 5, No 4: DECEMBER 2024
Publisher : Bright Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47738/jads.v5i4.408

Abstract

This study analyzes data from the Open University Learning Analytics Dataset to evaluate how students' interactions with Virtual Learning Environment (VLE) materials influence their final outcomes. This research aims to formulate and build a novel predictive framework based on the Felder-Silverman and Machine Learning Model for student learning styles. Based on these objectives, this research provides novelty and contributions since it enhances student data analysis, uses a learning model using Felder-Silverman Learning Style Model (FSLSM) to give a more comprehensive understanding of students' learning styles, and improves prediction accuracy by introducing Artificial Neural Network (ANN) and feature selection using Random Forest. The data used includes 3 main files: vle.csv, which contains information about the materials and activities in the VLE; studentVle.csv, which records students' interactions with the materials; and studentInfo.csv, which provides demographic information of students and their final outcomes. The analysis process involved data merging and processing, including handling of missing values, data type conversion, as well as mapping activity types to learning style features based on the FSLSM. We use the Random Forest feature selection method, as well as data imbalance handling techniques such as oversampling, to improve model performance. The applied classification models include Logistic Regression, K-Nearest Neighbor, Random Forest, Support Vector Machine (SVM), and ANN. The analysis results showed that after tuning, the Random Forest model achieved 97% accuracy, while SVM achieved 97% accuracy as well, with better performance than previous studies. This research highlights the importance of comprehensive data integration and appropriate processing techniques in improving the accuracy of student learning style prediction. Based on the increase in accuracy results, it can be beneficial for more effective personalized learning and improve our understanding of students' learning style preferences. The research advances knowledge and provides practical applications for educators to tailor their teaching strategies.
Co-Authors Adam Prayogo Kuncoro Adam Prayogo Kuncoro Adiya, Az Zahra Dwi Nur Afriansyah, Fery Aimah, Samsul Arif Mu'amar Wahid Aulia Hamdi Azhari Shouni Barkah Bagaskoro, Galih Berlilana Berlilana Cahyo, Samsul Dwi Chyntia Raras Ajeng Widiawati Cyrilla, Vidia Alma Damayanti, Wenti Risma Dani Arifudin Darmono Deasy Komarasary Dhanar Intan Surya Saputra Dhanar Intan Surya Saputra Ely Purnawati Ely Purnawati, Ely Embong Octavianto Fandy Setyo Utomo Fatudin, Arif Faturama, Rafi Febriansyah Husni Adiatma Febrianti, Diah Ratna Fery Afriansyah Giat Karyono Hasna Salsa Dhia hidayatulloh, hanif Ikmah Ikmah Ikmah, Ikmah Ilham, Rifqi Arifin Indriyani, Ria Irwansyah Munandar Ismail, Dimas Shafa Malik Junianto, Haris Kusuma, Bagus Adhi Latif, Imam Sofarudin Lughri Wijaya Pamungkas Maharani, Revalyna Octavia Maulana Baihaqi, Wiga Millatul Izza, Nia Mohd. Hafiz Zakaria Munandar, Irwansyah Nanjar, Agi Ndari, Arum Vika Nia Millatul Izza Novita Eka Ramadhani Nurfaizi, Maulana Nurmalitasari, Gupita Octavianto, Embong Pandu W, Muhammad Arfianto Prasetyo, Agung Pungkas Subarkah Purwadi Purwadi R. Vitto Mahendra Putranto Radeta Tea Makdatuang Ramadhan, Rio Fadly Ria Indriyani Rizqi Aulia Widianto Rohmah, Umdah Aulia Rosana Fadila Sari safitri feriawan, Titi Salam, Sazilah Salsa Dhia, Hasna Samsul Aimah Saputra , Dhanar Intan Surya Saputra, Alfin Nur Aziz Saputri, Inka Sari, Rida Purnama Sarmini Sarmini - Sarmini Sarmini Sarmini Sazilah Salam Serli, Serli Shendy Filanzi Sofa, Nur Sri Hartini Subarkah, Pungkas Suliswaningsih, Suliswaningsih Syahputra, Akhmal Angga Tanzilla, Armeyta Putri Tarwoto, T Tea Makdatuang, Radeta Titi Safitri Maharani Toni Anwar Turino, Turino Wahyuni, Irmawati Tri Wenti Risma Damayanti Wiga Maulana Baihaqi Wijaya, Anugerah Bagus Yuli Purwati Yulianto, Koko Edy