Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : Journal of Applied Data Sciences

Novel Predictive Framework for Student Learning Styles Based on Felder-Silverman and Machine Learning Model Maulana Baihaqi, Wiga; Eko Saputro, Rujianto; Setyo Utomo, Fandy; Sarmini, Sarmini
Journal of Applied Data Sciences Vol 5, No 4: DECEMBER 2024
Publisher : Bright Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47738/jads.v5i4.408

Abstract

This study analyzes data from the Open University Learning Analytics Dataset to evaluate how students' interactions with Virtual Learning Environment (VLE) materials influence their final outcomes. This research aims to formulate and build a novel predictive framework based on the Felder-Silverman and Machine Learning Model for student learning styles. Based on these objectives, this research provides novelty and contributions since it enhances student data analysis, uses a learning model using Felder-Silverman Learning Style Model (FSLSM) to give a more comprehensive understanding of students' learning styles, and improves prediction accuracy by introducing Artificial Neural Network (ANN) and feature selection using Random Forest. The data used includes 3 main files: vle.csv, which contains information about the materials and activities in the VLE; studentVle.csv, which records students' interactions with the materials; and studentInfo.csv, which provides demographic information of students and their final outcomes. The analysis process involved data merging and processing, including handling of missing values, data type conversion, as well as mapping activity types to learning style features based on the FSLSM. We use the Random Forest feature selection method, as well as data imbalance handling techniques such as oversampling, to improve model performance. The applied classification models include Logistic Regression, K-Nearest Neighbor, Random Forest, Support Vector Machine (SVM), and ANN. The analysis results showed that after tuning, the Random Forest model achieved 97% accuracy, while SVM achieved 97% accuracy as well, with better performance than previous studies. This research highlights the importance of comprehensive data integration and appropriate processing techniques in improving the accuracy of student learning style prediction. Based on the increase in accuracy results, it can be beneficial for more effective personalized learning and improve our understanding of students' learning style preferences. The research advances knowledge and provides practical applications for educators to tailor their teaching strategies.