Claim Missing Document
Check
Articles

Found 19 Documents
Search

Peningkatan Keberagaman Data untuk Klasifikasi Penyakit Diabetes Berbasis Stacking Ensemble Learning majid, nur kholis; Supriyanto, Catur; Marjuni, Aris
Jurnal Informatika: Jurnal Pengembangan IT Vol 10, No 1 (2025)
Publisher : Politeknik Harapan Bersama

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30591/jpit.v10i1.7375

Abstract

Diabetes cases are becoming more common in the late years. Diabetes attacks not only parents, but also children. The development of diabetes is not far from the lifestyle and diet that we live on a daily basis. Therefore, early detection of diabetes is essential because the earlier the disease is detected, the easier it is to treat. In the process of detecting disease based on factors, the cause can be predicted with data mining. The aim of this research is to increase data diversity so that it can be processed to the maximum in data mining. In the process of data upgrading, we used the imbalance learning method SMOTE-ENN combined with the method Stacking Ensemble Learning. In the search for a powerful stacking model, seven classification algorithms were involved in the experiments carried out on this study, namely: Random Forest, Decision Tree, Gradient Boosting, Naïve Bayes, Extreme Gradiant Boost, Logistic Regression, and k-Nearest Neighbor. Four algorithms were used to be classifiers level 0 (base model), namely kNN, Gradient Boosting, decision tree, and random forest, while Random Forest was used again to be classifier level 1. (meta model). With these combinations, the accuracy obtained is 97.3%. These are the highest results when compared to individual algorithms.
Pendampingan Penggunaan Software Aplikasi Sebagai Pendukung Menjalankan Perilaku Hidup Sehat di Lingkungan Panti Asuhan Nurul Istiqomah Al Hira’ Salam, Abu; Rakasiwi, Sindhu; Paramita, Cinantya; Supriyanto, Catur; Octaviani, Dhita Aulia; Mulyanto, Edy
ABDIMASKU : JURNAL PENGABDIAN MASYARAKAT Vol 8, No 1 (2025): JANUARI 2025
Publisher : LPPM UNIVERSITAS DIAN NUSWANTORO

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62411/ja.v8i1.2709

Abstract

The Clean and Healthy Lifestyle Program (PHBS) is an important program to encourage the implementation of a healthy lifestyle in maintaining, preserving, and improving health. Many diseases can be avoided if the community implements a healthy lifestyle. PHBS is ideal for implementation in school-age children, because they are included in the group at risk for health problems due to several factors. Technology in education has been proven to significantly change the way interaction and learning in the classroom, more efficiently, more easily accessible, and can build the skills needed in the current digital era and in the future. The use of digital applications as one of the products of technology has been widely used in both health and education, and are interrelated with each other where they complement each other. Information on health problems certainly requires the field of education to convey it, and vice versa, education cannot run smoothly if the environment is unhealthy. Thus, the role of technology in both fields is very important. Based on the things mentioned above, it is necessary to provide knowledge to students about PHBS. In addition to being given knowledge, students also need to be given guidance when practicing the PHBS material and including the role of technology in the form of digital applications so that learning can be more enjoyable and effective, where previously it was necessary to conduct socialization and training first regarding the use of the application to the caretakers of the Islamic boarding school. Based on the reasons stated, this time the team took the initiative to hold an activity in the form of Community Service with the theme of PHBS Assistance for Students with Digital Application Socialization, with a predetermined location, namely at the Nurul Istiqomah Al Hira 'Islamic Boarding School, so that PHBS can become a habit for students in their daily lives and can transmit these good habits to their environment.
Kinematika Performa 100 meter Sprinter Elit Indonesia Rizki, Ainun Zulfikar; Kusnanik, Nining Widyah; Fuad, Yusuf; Nurhasan, Nurhasan; Tuasikal, Abdul Rachman Syam; Al Ardha, Muchamad Arif; Supriyanto, Catur; Tisna MS, Gede Doddy; Yang, Chung Bing; Lin, wei Jhe
Jurnal Ilmu Keolahragaan Undiksha Vol. 10 No. 3 (2022): October
Publisher : Universitas Pendidikan Ganesha

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23887/jiku.v10i3.46305

Abstract

Kecepatan lari adalah produk dari panjang langkah dan frekuensi langkah dan oleh karena harus dipahami oleh atlet. Penelitian ini bertujuan untuk menganalisis penampilan lari 100 meter atlet sprinter elit Indonesia. Jenis penelitian ini adalah penelitian deskriptif kuantitatif-kualitatif. Desain penelitian ini adalah komparasi. Subjek dari penelitian ini adalah Lalu Muhammad Zohri pada saat Kejuaraan Atletik Junior di Finlandia 2018, Asian Games 2018, dan Olimpiade Tokyo 2020. Komponen variabel  pada penelitian ini adalah Stride, Arm extension, Elbow flexion, trunk flexion, Knee height. Instrumen dalam penelitian ini menggunakan software kinovea. Hasil dari penelitian ini tidak ada perbedaan yang signifikan antara stride pada ketiga kejuaraan dan ada perbedaan yang signifikan pada komponen arm extension, elbow flexion, trunk flexion, dan knee height pada kejuaraan dunia junior 2018, Asian Games 2018, dan Olimpiade Tokyo 2020. Analisis data menggunakan uji friedman test. Hasil dari penelitian ini adalah tidak ada perbedaan yang signifikan antara stride pada ketiga kejuaraan. Perbedaan signifikan ditemukan pada arm extension, elbow flexion, trunk flexion, dan knee height antara ketiga kejuaraan yang diikuti oleh Lalu Muhammad Zohri. Hasil capaian Lalu Muhammad Zohri pada Kejuaraan dunia Junior 2018 dengan catatan waktu 10.18 detik menunjukkan arm extension (100,68 ± 21,60º) dan trunk flexion (117,96 ± 14,50º) lebih besar dari yang dua kejuaraan lainnya. Sehingga kecepatan maksimum merupakan kombinasi dari kemampuan motorik dan teknik lari sprint yang sangat rasional.
Strategi Pembelajaran Daring Anak Usia Dini pada Masa Pandemi Covid-19 Safriyani, Rizka; Wakhidah, Elfa Wahyu; Supriyanto, Catur
Musamus Journal of Primary Education Vol 3 No 2 (2021)
Publisher : Faculty of Teacher Training and Education, Musamus University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35724/musjpe.v3i2.3227

Abstract

In the pandemic era, schools are implementing online learning strategies including at the Early Childhood Education level. Online learning for children of course presents its own challenges for the teaching teachers. This study aims to investigate online learning strategies at the play group level. The method in this research uses qualitative research that describes what strategies are used in online learning and its application in the NU 104 Al-Firdaus Muslimat Playgroup. Data collection techniques used in this study were observation, interviews, and documentation. The results of this study indicate that the Muslimat NU 104 Al-Firdaus Play Group uses video or photo media and the results of children's activities are sent by parents to the teacher via video or photos via the Whatsapp application. The activities carried out included singing, telling stories with parents, working on worksheets, and experimenting with making hand sanitizers. For parents who do not have a mobile device, home visits are carried out by the teacher with the same activities, namely singing, telling stories with parents, working on worksheets, and experimenting with making hand sanitizers.
Edukasi dan Sosialisasi Aplikasi Berbasis Mobile untuk Deteksi Dini Penyakit Kulit di STIKES Telogorejo Semarang Supriyanto, Catur; Paramita, Cinantya; Subhiyakto, Egia Rosi; Astuti, Yani Parti; Setiawan, Andreas Wilson; Rahadian, Arief; Shidik, Guruh Fajar; Widyaatmadja, Swanny Trikajanti
ABDIMASKU : JURNAL PENGABDIAN MASYARAKAT Vol 8, No 2 (2025): MEI 2025
Publisher : LPPM UNIVERSITAS DIAN NUSWANTORO

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62411/ja.v8i2.3005

Abstract

Aplikasi berbasis mobile untuk deteksi dini penyakit kulit memiliki potensi besar dalam meningkatkan kesadaran dan pemahaman masyarakat terhadap kesehatan kulit. Program pengabdian ini bertujuan untuk memberikan edukasi dan sosialisasi terkait pemanfaatan teknologi kecerdasan buatan dalam deteksi dini penyakit kulit kepada mahasiswa dan tenaga kesehatan di STIKES Telogorejo Semarang. Kegiatan ini meliputi pelatihan penggunaan aplikasi, pemahaman dasar tentang teknologi kecerdasan buatan dalam analisis citra medis, serta diskusi interaktif mengenai pentingnya deteksi dini dalam pencegahan penyakit kulit. Metode yang digunakan mencakup presentasi, demonstrasi langsung, serta sesi praktik dengan studi kasus nyata. Hasil dari kegiatan ini menunjukkan peningkatan pemahaman peserta mengenai teknologi deteksi penyakit kulit berbasis AI, serta meningkatnya minat dalam mengadopsi teknologi digital dalam bidang kesehatan. Selain itu, peserta juga memberikan umpan balik positif terkait kemudahan penggunaan dan manfaat aplikasi dalam mendukung diagnosis awal. Kesimpulannya, edukasi dan sosialisasi ini berhasil meningkatkan literasi digital di bidang kesehatan serta mendorong pemanfaatan teknologi dalam layanan medis. Ke depan, pengembangan aplikasi lebih lanjut dan implementasi di fasilitas kesehatan diharapkan dapat semakin meningkatkan kualitas layanan kesehatan berbasis teknologi
Detection and Localization of Brain Tumors on MRI Images Using the YOLO Algorithm Bayu Satria, Zaky Indra; Supriyanto, Catur
Journal of Applied Informatics and Computing Vol. 9 No. 4 (2025): August 2025
Publisher : Politeknik Negeri Batam

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30871/jaic.v9i4.10047

Abstract

This study addresses the critical need for early and accurate brain tumor diagnosis on MRI images by comparing five versions of the YOLO algorithm (YOLOv5, YOLOv7, YOLOv8, YOLOv9, and YOLOv12) with consistent parameters. Utilizing a pre-annotated Kaggle MRI brain dataset, the research meticulously verified annotations and employed data augmentation (flipping, rotation, blurring, noise) to expand the dataset from 801 to approximately 1362 images, enhancing model generalization and robustness. Models were trained and evaluated on metrics including precision, recall, mAP@0.5, mAP@0.5:0.95, and inference time. YOLOv12 demonstrated superior overall performance, achieving the highest recall (97.32%), mAP@0.5 (92.2%), and mAP@0.5:0.95 (76.57%), establishing its robustness for accurate detection and object localization. While YOLOv7 achieved the highest precision (96.89%) and excellent inference speed, its overall mAP and recall were surpassed by other iterations. YOLOv9 and YOLOv8 also showed strong competitive performance, indicating significant advancements in the newer YOLO generations. The findings confirm the efficacy of the YOLO algorithm for brain tumor detection and localization in MRI images, with YOLOv12 proving to be the most effective variant in this comparative analysis.
Minat Siswa terhadap Club Bulutangkis di SMA Negeri 2 Mejayan Kabupaten Madiun Pitaloka, Tia Amika; Wismanadi, Himawan; Rusdiawan, Afif; Supriyanto, Catur
Indonesian Research Journal on Education Vol. 5 No. 5 (2025): Irje 2025
Publisher : Fakultas Keguruan dan Ilmu Pendidikan, Universitas Pahlawan Tuanku Tambusai

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31004/irje.v5i5.3440

Abstract

Penelitian ini dilaksanakan untuk mengetahui tingkat minat siswa terhadap club bulutangkis di SMA Negeri 2 Mejayan Kabupaten Madiun, mengingat olahraga ini cukup populer namun partisipasi siswa cenderung menurun dalam dua tahun terakhir. Kajian ini penting karena minat merupakan faktor psikologis yang berpengaruh besar terhadap keaktifan siswa dalam kegiatan ekstrakurikuler, sehingga pemahaman terhadap minat siswa dapat menjadi dasar pengembangan program pembinaan olahraga di sekolah. Penelitian menggunakan pendekatan kuantitatif deskriptif dengan teknik survei. Sampel terdiri dari 50 siswa anggota club bulutangkis yang dipilih melalui purposive sampling. Data dikumpulkan menggunakan angket tertutup berbasis skala Likert yang memuat indikator faktor internal (keinginan, rasa suka, aktivitas konsisten) dan eksternal (dukungan keluarga, guru/pelatih, fasilitas, lingkungan). Data dianalisis dengan statistik deskriptif berupa distribusi frekuensi dan persentase. Hasil penelitian menunjukkan bahwa minat siswa dari faktor internal berada pada kategori tinggi, sedangkan dari faktor eksternal berada pada kategori rendah. Temuan ini mengindikasikan bahwa meskipun potensi minat internal siswa cukup tinggi, minat tersebut perlu diperkuat melalui dukungan lingkungan yang kondusif. Penelitian ini memberikan kontribusi bagi pengembangan program ekstrakurikuler di sekolah, khususnya dalam merancang strategi peningkatan partisipasi siswa melalui penguatan motivasi internal sekaligus dukungan eksternal secara sinergis.
Deep Learning-based Models with YOLOv7 and Convolutional Neural Networks for Vehicle Detection and Recognition Nugroho, Wahyu Adi; Supriyanto, Catur; Safar, Noor Zuraidin Mohd
JOIV : International Journal on Informatics Visualization Vol 9, No 5 (2025)
Publisher : Society of Visual Informatics

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62527/joiv.9.5.3584

Abstract

The application of artificial intelligence (AI) technology has become prevalent across various sectors, including transportation and smart city. A key implementation of AI in this domain is traffic monitoring, often relying on license plate recognition to identify vehicles. However, this approach faces limitations when plates are obscured. To address this issue, this research explores a broader approach by recognizing general vehicle attributes, ensuring more accurate identification and comprehensive traffic statistics. The proposed solution integrates the You Only Look Once (YOLO) object detection algorithm and convolutional neural networks (CNN) pretrained models for vehicle attributes recognition. This study utilizes multiple datasets, including Roboflow Vehicle, Stanford Cars, VehicleID, and VCoR, to ensure comprehensive model evaluation. Experimental results indicate that YOLOv7 achieved a mean average precision (mAP) score of 86.1% for vehicle detection, with an average precision (AP) score of 91.5% for the car class. For vehicle make and model recognition, the lightweight EfficientNetV2S model demonstrated the highest accuracy score, achieving 89.8% and 99.2% on the Stanford Cars and VehicleID dataset, respectively. For vehicle color recognition, DenseNet201 models achieved the highest accuracy score of 87% on the VCoR dataset. These findings underscore the effectiveness of integrating YOLOv7 and CNN models for robust vehicle detection and recognition. This research provides a practical solution to the limitations of traditional license plate recognition methods, contributing to the development of more accurate and efficient traffic monitoring systems. Future studies may further optimize the framework for real-time applications and diverse traffic scenarios.
Pelatihan Penggunaan Aplikasi Screen Reader JAWS Bagi Tunanetra Untuk Meningkatkan Kemampuan Dalam Pengelolaan Administrasi Paramita, Cinantya; Sudibyo, Usman; Muljono, Muljono; Supriyanto, Catur
ABDIMASKU : JURNAL PENGABDIAN MASYARAKAT Vol 2, No 2 (2019): Juli 2019
Publisher : LPPM UNIVERSITAS DIAN NUSWANTORO

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (586.68 KB) | DOI: 10.33633/ja.v2i2.46

Abstract

Salah satu permasalahan yang dihadapi Perkumpulan Penyandang Disabilitas Indonesia (PPDI), Dewan Pengurus Cabang (DPC) Kota Semarang yakni terbatasnya media dan prasarana untuk mendukung kegiatan belajar mereka dalam mengoperasikan komputer serta tingkat perekonomian yang hanya cukup untuk memenuhi kebutuhan hidup, meraka pun belum sepenuhnya paham dalam perkembangan teknologi hingga sampai saat ini semua masih diolah dalam bentuk manual yakni melaporkan dengan lisan dan dengan cara mengingat. Untuk mengatasi permasalahan tersebut, pengabdian ini mengusulkan untuk mengadakan pelatihan penggunaan Job Access with Speech (JAWS) bagi para tuna netra. Pengabdian dilakukan dengan mengajarkan penggunaan dasar keyboard yang didukung oleh aplikasi JAWS dan pengetahuan dasar Microsoft Excel.