Claim Missing Document
Check
Articles

PERANCANGAN E-READINESS FRAMEWORK ADOPSI CLOUD COMPUTING PADA PERGURUAN TINGGI Soni Fajar Surya G; Kridanto Surendro
Jurnal Komputer Bisnis Vol 2 No 2 (2013): Jurnal Komputer Bisnis
Publisher : Journal of Business Computers

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (844.041 KB)

Abstract

Perguruan tinggi (PT) diakui sebagai salah satu pilar pembangunan masyarakat. Dengan semangat Tri Dharma Perguruan Tinggi yang meliputi kegiatan pendidikan dan pengajaran, penelitian serta pengabdian kepada masyarakat, perguruan tinggi dituntut untuk memberikan kontribusi bagi pengembangan kehidupan masyarakat suatu negara. Namun adakalanya kegiatan operasional tersebut berdampak kepada kebutuhan dana yang tidak sedikit sehingga tidak jarang perguruan tinggi dengan dukungan dana minim mengalami kesulitan dalam melakukan proses kegiatan operasionalnya tersebut. Hadirnya teknologi cloud computing dirasa dapat menjadi sebuah solusi efektif dan efisien bagi perguruan tinggi dalam menjalankan kegiatan operasionalnya. Tantangan yang harus dihadapi organisasi perguruan tinggi pada saat akan mengadopsi teknologi baru seperti cloud computing, tentunya akan sangat berhubungan dengan adanya kesiapan teknologi informasi (TI) atau eReadiness dari para pengguna dilingkungan sistem tersebut. Karena alasan itulah kerangka kerja eReadiness perlu digunakan untuk melakukan pengukuran tingkat kesiapan TI, agar proses adopsi dapat berjalan dengan baik. Pada makalah ini akan dibahas dimensi enabler apa saja yang berpengaruh terhadap eReadiness cloud computing di perguruan tinggi, dan bagaimana posisi eReadiness PT di kota Bandung dalam mengadopsi cloud computing. Dengan menggunakan dimensi enabler enterprise tatakelola TI dari COBIT 5, framework eReadiness akan dirancang dengan tujuan dihasilkannya sebuah tools untuk mengukur tingkat kesiapan berbasis model penilaian kematangan (matutiry level).
Quantum Machine Learning Untuk Prediksi Emisi Gas Rumah Kaca dalam Perspektif Filsafat Sains : Quantum Machine Learning for Predicting Greenhouse Gas Emissions from a Philosophy of Science Perspective Hidayat, Wahyu; Surendro, Kridanto; Mahayana, Dimitri; Rosmansyah, Yusep
Jurnal Filsafat Indonesia Vol. 7 No. 2 (2024)
Publisher : Undiksha

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23887/jfi.v7i2.72236

Abstract

The climate change issues due to greenhouse gas emissions and the emergence of Quantum Machine Learning technology have sparked various studies in utilizing quantum machine learning (QML) to predict greenhouse gas emissions (GHG). This article aims to illustrate research related to the implementation of QML for GHG emission prediction from the perspective of the philosophy of science, particularly in terms of the scientific revolution from Thomas Kuhn's perspective, research program analysis from Imre Lakatos' perspective, pseudoscience pitfalls, potential biases of injustice, ethical and moral aspects, and their impact on society. The article is structured using a qualitative descriptive method. Reference sources include original articles and review articles from journals collected from the Scopus database with topics related to GHG emission prediction. Based on the review of the articles, it can be outlined that research on QML for GHG emission prediction is a progressive science currently in the phase of intensive exploration and development, where the research paradigm in this area is dominated by logical positivism and pragmatism. However, over time and with the development of the research context, new paradigms may emerge as additions or even replace existing research paradigms. The article also identifies the potential biases of injustice, ethical and moral aspects, and the impact of research in this field on society, recommending five strategies to avoid pseudoscience pitfalls related to research on QML for GHG emission prediction.
COMPARATIVE ANALYSIS OF MULTI-CRITERIA DECISION MAKING METHODS IN DETERMINING REDD+ PROJECT LOCATION Irawan, Aditya Putra; Surendro, Kridanto
International Journal of Social Service and Research Vol. 4 No. 8 (2024): International Journal of Social Service and Research
Publisher : Ridwan Institute

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.46799/ijssr.v4i8.879

Abstract

The Reducing Emissions from Deforestation and Forest Degradation (REDD+) mechanism is aimed at reducing global greenhouse gas (GHG) emissions. This study aims to develop a multi-criteria decision-making (MCDM) model specifically designed to prioritize locations for REDD + projects. The proposed research design focuses on developing a MCDM framework for determining the priority locations for projects using criteria such as climate impact reduction, contributions to local communities, and biodiversity conservation. The study utilized the Analytic Hierarchy Process (AHP), Simple Additive Weighting (SAW), Weighted Product Method (WPM), Technique for Order Preference by Similarity to Ideal Solution (TOPSIS), and VlseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR) to determine the prioritization of alternatives based on compromise solutions. The success of this research demonstrates that a systematic approach to determining priority locations can be effectively carried out using MCIM. This research is expected to aid policymakers and stakeholders in making more informed and effective decisions for environmental conservation and climate change mitigation.
Enhancing the Comprehensiveness of Criteria-Level Explanation in Multi-Criteria Recommender System Rismala, Rita; Maulidevi, Nur Ulfa; Surendro, Kridanto
Journal of Information Systems Engineering and Business Intelligence Vol. 11 No. 2 (2025): June
Publisher : Universitas Airlangga

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20473/jisebi.11.2.160-172

Abstract

Background: The explainability of recommender systems (RSs) is currently attracting significant attention. Recent research mainly focus on item-level explanations, neglecting the need to provide comprehensive explanations for each criterion. In contrast, this research introduces a criteria-level explanation generated in a content-based pardigm by matching aspects between the user and item. However, generation may fall short when user aspects do not match perfectly with the item, despite possessing similar semantics.  Objective: This research aims to extend the aspect-matching method by leveraging semantic similarity. The extension provides more detail and comprehensive explanations for recommendations at the criteria level.    Methods: An extended version of the aspect matching (AM) method was used. This method identified identical aspects between users and items and obtained semantically similar aspects with closely related meanings.   Results: Experiment results from two real-world datasets showed that AM+ was superior to the AM method in coverage and relevance. However, the improvement varied depending on the dataset and criteria sparsity.  Conclusion: The proposed method improves the comprehensiveness and quality of the criteria-level explanation. Therefore, the adopted method has the potential to improve the explainability of multi-criteria RSs. The implication extends beyond the enhancement of explanation to facilitate better user engagement and satisfaction.  Keywords: Comprehensiveness, Content-Based Paradigm, Criteria-Level Explanation, Explainability, Multi-Criteria Recommender System
Development of an AI Governance Model for Higher Education Using the Capability Maturity Model Integration (CMMI) Walhidayah, Irfan; Surendro, Kridanto
Jurnal Teknik Informatika (Jutif) Vol. 6 No. 4 (2025): JUTIF Volume 6, Number 4, Agustus 2025
Publisher : Informatika, Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52436/1.jutif.2025.6.4.4709

Abstract

The increasing adoption of Artificial Intelligence (AI) in higher education presents strategic opportunities for institutional transformation, while introducing complex challenges related to ethics, accountability, transparency, and regulatory compliance. Responding to the growing complexity of AI implementation in academic environments , this study proposes a governance model for AI named GOVAIHEI (Governance of Artificial Intelligence for Higher Education Institutions), conceptualized using the Capability Maturity Model Integration (CMMI) framework. The model was developed using the Design Research Methodology (DRM), which consists of four stages: Research Clarification, Descriptive Study I, Prescriptive Study, and Descriptive Study II. GOVAIHEI encompasses five primary domains: Data and Information, Technology and Infrastructure, Ethics and Social Responsibility, Regulation and Compliance, and Monitoring and Evaluation. Each domain is articulated into capability areas and measurable practices, assessed using the tiered NPLF scale (Not, Partial, Largely, Fully Achieved) to determine institutional capability and maturity levels. The model was validated through expert judgment by three domain specialists, confirming its relevance, methodological soundness, and alignment with CMMI principles. A web-based evaluation system was also developed using Laravel, PostgreSQL, Redis, and Nginx, enabling structured, efficient, and automated assessments. Implementation in a case study at Institute XYZ revealed an initial maturity level (Level 1) with development goals toward Level 3 (Defined). The findings demonstrate a practical foundation for navigating the multifaceted nature of AI adoption in higher education through a structured and adaptable governance approach, which aligns with the increasing demand for robust digital governance frameworks in technology-driven environments.  
Deteksi Cyberbullying dengan Mesin Pembelajaran Klasifikasi (Supervised Learning): Peluang dan Tantangan Setiawan, Yudi; Maulidevi, Nur Ulfa; Surendro, Kridanto
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 9 No 7: Spesial Issue Seminar Nasional Teknologi dan Rekayasa Informasi (SENTRIN) 2022
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jtiik.2022976747

Abstract

Perkembangan teknologi media sosial tidak hanya memberikan kemudahan dalam berkomunikasi antar individu, akan tetapi juga dapat mengancam kehidupan sosial individu seperti tidakan cyberbullying. Bervariasinya pola dan karakteritik cyberbullying mengakibatkan sulitnya proses deteksi cyberbullying, yang dilakukan oleh pelaku cyberbullying. Penelitian deteksi pola dan karakteristik cyberbullying banyak dilakukan dengan berbagai metode, seperti dengan mengimplementasikan Machine Learning, Natural Language Processing (NLP), dan Sentiment Analysis yang memiliki variasi akurasi yang berbeda, dengan keunggulan dan kelemahan dari masing-masing metode. Implementasi Machine Learning untuk deteksi cyberbullying dapat dilakukan dengan berbagai algoritma, seperti algoritma probabilistik (Naïve Bayes) maupun supervised learning (Support Vector Machine, k-Nearest Neighbour, Decission Tree), dan metode lainnya yang hingga saat ini terus dikembangkan dengan berbagai pendekatan untuk meningkatkan akurasi deteksi cyberbullying atau non-cyberbullying. Adapun peluang dan tantangan penelitian deteksi cyberbullying seperti penerapan pada variasi domain bahasa, dan bentuk ekspresi yang dilakukan pada suatu lingkungan atau budaya, yang masih terdapat ruang untuk dikembangkan dan dijelajah secara luas. Pada artikel ini menjabarkan penelitian berikutnya berupa mengimplementasikan metode pembelajaran klasifikasi (Supervised Learning) dengan modifikasi tahapan untuk meningkatkan akurasi klasifikasi.
A System Dynamics Model of 5G Low-Band Spectrum Management Shalahuddin, Muhammad; Sunindyo, Wikan Danar; Effendi, Mohammad Ridwan; Surendro, Kridanto
Journal of ICT Research and Applications Vol. 19 No. 1 (2025)
Publisher : DRPM - ITB

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5614/itbj.ict.res.appl.2025.19.1.3

Abstract

The fifth-generation (5G) mobile communication system represents a major advancement in wireless technology, relying on effective radio spectrum management to ensure optimal performance. Among the available frequency ranges, the 5G low-band spectrum provides extensive coverage but limited capacity, making its efficient management a critical challenge. This study presents a predictive model based on the system dynamics approach to analyze the management of the 5G low-band spectrum. The model captures the interrelationships between technical and economic variables that influence spectrum allocation and service adoption over time. Three simulation scenarios—low, medium, and high allocation rates—were developed to examine allocation patterns and their effects on 5G service diffusion. The results revealed that spectrum management in 5G exhibits goal-seeking behavior constrained by spectrum scarcity, with service adoption showing a growth-to-saturation pattern. The findings demonstrate that appropriate low-band spectrum management can significantly enhance 5G deployment efficiency. The proposed model serves as a decision-support tool for policymakers and regulators, enabling evaluation of alternative management strategies prior to policy implementation and promoting evidence-based decision-making in future 5G spectrum policies.