Claim Missing Document
Check
Articles

Found 35 Documents
Search

Delineation of electrocardiogram morphologies by using discrete wavelet transforms Annisa Darmawahyuni; Siti Nurmaini; Hanif Habibie Supriansyah; Muhammad Irham Rizki Fauzi; Muhammad Naufal Rachmatullah; Firdaus Firdaus; Bambang Tutuko
Indonesian Journal of Electrical Engineering and Computer Science Vol 22, No 1: April 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v22.i1.pp159-167

Abstract

The accuracy of electrocardiogram (ECG) delineation can affect the precise diagnose for cardiac disorders interpretation. Some nonideal ECG presentation can make a false decision in precision medicine. Besides, the physiological variation of heart rate and different characteristics of the different ECG waves in terms of shape, frequency, amplitude, and duration is also affected. This paper proposes a discrete wavelet transform (DWT), non-stationary signal analysis for noise removal, and onset-offset of PQRST feature extraction. A well-known database from Physionet: QT database (QTDB) is used to validate the DWT function for detecting the onset and offset of P-wave, QRS-complex, and T-wave localization. From the results, P-peak detection gets the highest result that achieves 2.19 and 13.62 milliseconds of mean error and standard deviation, respectively. In contrast, Toff has obtained the highest error value due to differences in the T-wave morphology. It can be affected by inverted or biphasic T-waves and others.
Membandingkan Nilai Akurasi BERT dan DistilBERT pada Dataset Twitter Fajri, Faisal; Tutuko, Bambang; Sukemi, Sukemi
JUSIFO : Jurnal Sistem Informasi Vol 8 No 2 (2022): JUSIFO (Jurnal Sistem Informasi) | December 2022
Publisher : Program Studi Sistem Informasi, Fakultas Sains dan Teknologi, Universitas Islam Negeri Raden Fatah Palembang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.19109/jusifo.v8i2.13885

Abstract

The growth of digital media has been incredibly fast, which has made consuming information a challenging task. Social media processing aided by Machine Learning has been very helpful in the digital era. Sentiment analysis is a fundamental task in Natural Language Processing (NLP). Based on the increasing number of social media users, the amount of data stored in social media platforms is also growing rapidly. As a result, many researchers are conducting studies that utilize social media data. Opinion mining (OM) or Sentiment Analysis (SA) is one of the methods used to analyze information contained in text from social media. Until now, several other studies have attempted to predict Data Mining (DM) using remarkable data mining techniques. The objective of this research is to compare the accuracy values of BERT and DistilBERT. DistilBERT is a technique derived from BERT that provides speed and maximizes classification. The research findings indicate that the use of DistilBERT method resulted in an accuracy value of 97%, precision of 99%, recall of 99%, and f1-score of 99%, which is higher compared to BERT that yielded an accuracy value of 87%, precision of 91%, recall of 91%, and f1-score of 89%.
Pelatihan Keuangan Syariah Sebagai Penguatan Strategi Keluarga Sakinah Malik, Ahmad Dahlan; Tutuko, Bambang; Hudaifah, Ahmad; Asyhad, M.
SULUH: Jurnal Abdimas Vol 5 No 1 (2023): SULUH: Jurnal Abdimas Agustus
Publisher : FEB-UP Press

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35814/suluh.v5i1.4587

Abstract

Perencanaan keuangan syariah menjadi hal yang sangat penting dalam penguatan keluarga Sakinah dalam rangka peningkatan kesejahteraan masyarakat. Dengan ini, pengabdian kepada masyarakat pada program pelatihan perencanaan keuangan syariah bersertifikasi profesi dan dengan menggunakan aplikasi MyIFPE Syariah yang dilaksanakan di Kelurahan Lumbungrejo, Jogjakarta, Jawa Tengah. Pihak kelurahaan menjadi daerah percontohan dengan mengusung program Desa Binaan Keluarga Sakinah (DBKS) tingkat Daerah Istimewa Yogyakarta. Pada program tersebut, pelatihan perencanaan keuangan syariah berbasis aplikasi dan sertifikasi profesi sangat menunjang bagi perkembangan program dan masyarakat. Pelatihan dilaksanakan secara penyuluhan dan pendampingan intensif di balai kelurahan. Hasil pelatihan pada peserta menjadi tersertifikasi sebagai perencana keuangan syariah, memiliki wawasan lebih luas lagi dan perbaikan dalam perencanaan keuangan syariah pada keluarganya dan pengembangannya dengan menyebarkan pada kegiatan Pemberdayaan Kesejahteraan Keluarga (PKK) dengan lebih mudah berbasis aplikasi.
Multi-scale input reconstruction network and one-stage instance segmentation for enhancing heart defect prediction rate Sutarno, Sutarno; Nurmaini, Siti; Sapitri, Ade Iriani; Rachmatullah, Muhammad Naufal; Tutuko, Bambang; Darmawahyuni, Annisa; Firdaus, Firdaus; Islami, Anggun; Samsuryadi, Samsuryadi
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 13, No 3: September 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v13.i3.pp3404-3413

Abstract

Artifacts and unpredictable fetal movements can hinder clear fetal heart imaging during ultrasound scans, complicating anatomical identification. This study presents a new medical imaging approach that combines one-stage instance segmentation with ultrasound (US) video enhancement for precise fetal heart defect detection. This innovation allows real-time identification and timely medical intervention. The study acquired 100 fetal heart US videos from an Indonesian Hospital featuring cardiac septal defects, generating 1,000 frames for training, validation, and testing. Utilizing a combination of the multi-scale input reconstruction network (MIRNet) for image enhancement and YOLOv8l-seg for real-time instance segmentation, the method achieved outstanding validation results, boasting a 99.50% mAP for bounding box prediction and 98.40% for mask prediction. It delivered a remarkable real-time processing speed of 68.4 frames per second. In application to new patients, the method yielded a 65.93% mAP for bounding box prediction and 57.66% for mask prediction. This proposed approach offers a promising solution to early fetal heart defect detection using ultrasound, holding substantial potential for enhancing healthcare outcomes.
Utilizing IoT-Enhanced Multilayer Perceptron and Run Length Encoding for Classifying Plant Suitability Based on pH and Soil Humidity Parameters Pratama, Yogi Tiara; Sukemi, Sukemi; Tutuko, Bambang
Journal of Information System and Informatics Vol 6 No 3 (2024): September
Publisher : Universitas Bina Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.51519/journalisi.v6i3.811

Abstract

This research proposes an IoT-based system for classifying plant suitability using pH data and soil humidity parameters. The system utilizes Run-Length Encoding (RLE) to compress sensor data, which is transmitted to a database server via the Esp8266 module. A Multilayer Perceptron (MLP) algorithm is employed to classify the data, achieving an accuracy of 0.82 with only two parameters. The classification results are displayed on a website, providing real-time recommendations for farmers. The system's performance is evaluated using a dataset from Kaggle. The Kaggle dataset contains 2200 instances for 22 different plants and the results show that the proposed system can effectively classify plant suitability based on environmental factors. This research contributes to the development of IoT-based recommendation systems for precision agriculture, and future studies can build upon this work to improve accuracy and quality.
TeleOTIVA: Advanced AI-Powered Automated Screening System for Early Detection of Precancerous Lesions Rachmamtullah, Muhammad Naufal; Nurmaini, Siti; Agustiansyah, Patiyus; Sanif, Rizal; Sastradinata, Irawan; Arum, Akhiar Wista; Firdaus, Firdaus; Darmawahyuni, Annisa; Tutuko, Bambang; Sapitri, Ade Iriani; Islami, Anggun
Computer Engineering and Applications Journal Vol 14 No 1 (2025)
Publisher : Universitas Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18495/comengapp.v14i1.1197

Abstract

In 2023, the Indonesian Ministry of Health launched the Rencana Aksi Nasional (RAN) to enhance the detection and management of cervical cancer in Indonesia. One of the main pillars in this movement is the implementation of early screening for precancerous lesions aimed at identifying and treating these lesions before they develop into cervical cancer. This effort includes improving public access to healthcare services, providing education and awareness about the importance of early detection, and utilizing the latest technology in screening procedures. It is hoped that, through these targeted and effective interventions, the incidence of cervical cancer can be significantly reduced. This research aims to facilitate the early detection screening process for cervical precancerous lesions, particularly in difficult areas for medical experts to reach. This study also seeks to assist obstetricians and gynecologists in detecting precancerous lesions automatically, quickly, and accurately. By developing an advanced technology-based screening system, it is hoped that early detection of precancerous lesions can be carried out more efficiently, thereby increasing the chances of timely treatment and reducing the incidence of cervical cancer across various regions in Indonesia. This system is designed to provide reliable and user-friendly diagnostic support as it is developed on a mobile platform that can be accessed anytime and anywhere. This research developed a system for early screening called Tele-OTIVA. The Tele-OTIVA application system is an advanced platform that uses artificial intelligence (AI) based approaches to provide optimal services in early detection of precancerous lesions. This application is designed for mobile, allowing users to access and use its advanced features anytime and anywhere. With the integration of AI technology, Tele-OTIVA can detect and analyze cervical precancerous lesions accurately and quickly to provide accurate and efficient screening results. The Tele-OTIVA application system is capable of providing satisfactory detection results. The performance of the proposed model achieves accuracy, sensitivity, and specificity levels above 90%. With this high performance, Tele-OTIVA ensures that the detection of precancerous lesions is carried out with high reliability and precision, instilling greater confidence in healthcare professionals and users during the screening and diagnosis process. The implementation of our application model offers numerous advantages over traditional methods. It significantly enhances efficiency by automating processes, reduces human error through rigorous error-checking mechanisms, and accelerates the processing of large datasets. These improvements streamline operations and ensure more reliable and rapid data analysis.
PENDAMPINGAN PENGELOLAAN PENYEDIAAN AIR BERSIH MASYARAKAT DUSUN MUJO DESA SUMOGAWE KABUPATEN SEMARANG Tutuko, Bambang; Wanto, Sri; Purwanto, Purwanto; Kustirini, Anik
Jurnal Abdimas Bina Bangsa Vol. 6 No. 1 (2025): Jurnal Abdimas Bina Bangsa
Publisher : LPPM Universitas Bina Bangsa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.46306/jabb.v6i1.1658

Abstract

In Mujo Hamlet, Sumogawe Village, Getasan District, there has been no effort to organize an institutional clean water supply program. So far, the community has held it independently, either individually or in groups of around five heads of families. The aim of this community service activity is to form an organizing institution for the management of clean water supply for the community and to create an initial design for the distribution of clean water networks to residents' homes. The implementation method begins with a location survey, outreach and audience with the community, monitoring and evaluation. The results of this activity are maps of the distribution of clean water pipe networks from springs to people's homes. By having a map of the distribution of clean water pipe networks, it is hoped that the community will participate together in forming an institution that organizes clean water supply and can carry out its implementation well.
Inter Patient Atrial Fibrillation Classification Using One Dimensional Convolution Neural Network Rifai, Ahmad; Rachmatullah, Muhammad Naufal; Sutarno; Tutuko, Bambang
Computer Engineering and Applications Journal (ComEngApp) Vol. 11 No. 1 (2022)
Publisher : Universitas Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Atrial fibrillation is the most common type of arrhythmia. The process of detecting AF disease is quite difficult. This is because it is necessary to detect the presence or absence of a P signal wave in the ECG signal. However, this method requires special expertise from a cardiologist. Several literatures have proposed an automatic ECG classification system. However, the intra-patient paradigm does not simulate real-world scenarios. One of the challenges in the inter-patient paradigm is the morphological differences between one subject and another. In order to overcome the problems that arise in the automatic classification of ECG signal patterns a deep learning approach was proposed. This study proposes the classification process of atrial fibrillation in the inter-patient paradigm using a one-dimensional convolutional neural network architecture. The test is divided into two cases: two labels (Normal and AF) and three labels (Normal, AF and Non-AF). In the case of two test labels with an inter-patient scheme, the performance was 100% for all test metrics (accuracy, sensitivity, precision, and F1-Score). However, in the three-label case, the model's performance decreased to 85.95, 70.02, 72.50, 71.19 for accuracy, sensitivity, precision and F1-Score, respectively.
Forecasting Of Intensive Care Unit Patient Heart Rate Using Long Short-Term Memory Firdaus; Fachrurrozi, Muhammad; Nurmaini, Siti; Tutuko, Bambang; Rachmatullah, Muhammad Naufal; Darmawahyuni, Annisa; Sapitri, Ade Iriani; Islami, Anggun; Maharani, Masayu Nadila; Putra, Bayu Wijaya
Computer Engineering and Applications Journal (ComEngApp) Vol. 12 No. 3 (2023)
Publisher : Universitas Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Cardiac arrest remains a critical concern in Intensive Care Units (ICUs), with alarmingly low survival rates. Early prediction of cardiac arrest is challenging due to the complexity of patient data and the temporal nature of ICU care. To address this challenge, we explore the use of Deep Learning (DL) models, specifically Long ShortTerm Memory (LSTM), Bidirectional LSTM (BiLSTM), and Gated Recurrent Unit (GRU), for forecasting ICU patient heart rates. We utilize a dataset extracted from the MIMIC III database, which poses the typical challenges of irregular time series data and missing values. Our research encompasses a comprehensive methodology, including data preprocessing, model development, and performance evaluation. Data preprocessing involves regularizing and imputing missing values, as well as data normalization. The dataset is partitioned into training, testing, and validation sets to facilitate model training and evaluation. Fine-tuning of hyperparameters is conducted to optimize each DL architecture's performance. Our results reveal that the GRU architecture consistently outperforms LSTM and BiLSTM in predicting heart rates, achieving the lowest RMSE and MAE values. The findings underscore the potential of DL models, particularly GRU, in enhancing the early detection of cardiac events in ICU patients.
TeleOTIVA: Advanced AI-Powered Automated Screening System for Early Detection of Precancerous Lesions Rachmatullah, Muhammad Naufal; Nurmaini, Siti; Agustiansyah, Patiyus; Sastradinata, Irawan; Arum, Akhiar Wista; Firdaus; Darmawahyuni, Annisa; Tutuko, Bambang; Sapitri, Ade Iriani; Islami, Anggun
Computer Engineering and Applications Journal (ComEngApp) Vol. 14 No. 1 (2025)
Publisher : Universitas Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

In 2023, the Indonesian Ministry of Health launched the Rencana Aksi Nasional (RAN) to enhance the detection and management of cervical cancer in Indonesia. One of the main pillars in this movement is the implementation of early screening for precancerous lesions aimed at identifying and treating these lesions before they develop into cervical cancer. This effort includes improving public access to healthcare services, providing education and awareness about the importance of early detection, and utilizing the latest technology in screening procedures. It is hoped that, through these targeted and effective interventions, the incidence of cervical cancer can be significantly reduced. This research aims to facilitate the early detection screening process for cervical precancerous lesions, particularly in difficult areas for medical experts to reach. This study also seeks to assist obstetricians and gynecologists in detecting precancerous lesions automatically, quickly, and accurately. By developing an advanced technology-based screening system, it is hoped that early detection of precancerous lesions can be carried out more efficiently, thereby increasing the chances of timely treatment and reducing the incidence of cervical cancer across various regions in Indonesia. This system is designed to provide reliable and user-friendly diagnostic support as it is developed on a mobile platform that can be accessed anytime and anywhere. This research developed a system for early screening called TeleOTIVA. The TeleOTIVA application system is an advanced platform that uses artificial intelligence (AI) based approaches to provide optimal services in early detection of precancerous lesions. This application is designed for mobile, allowing users to access and use its advanced features anytime and anywhere. With the integration of AI technology, TeleOTIVA can detect and analyze cervical precancerous lesions accurately and quickly to provide accurate and efficient screening results. The TeleOTIVA application system is capable of providing satisfactory detection results. The performance of the proposed model achieves accuracy, sensitivity, and specificity levels above 90%. With this high performance, TeleOTIVA ensures that the detection of precancerous lesions is carried out with high reliability and precision, instilling greater confidence in healthcare professionals and users during the screening and diagnosis process. The implementation of our application model offers numerous advantages over traditional methods. It significantly enhances efficiency by automating processes, reduces human error through rigorous error-checking mechanisms, and accelerates the processing of large datasets. These improvements streamline operations and ensure more reliable and rapid data analysis.