Claim Missing Document
Check
Articles

Found 35 Documents
Search

Crawling Data Customer Pada Aplikasi Smarsofi Untuk Layanan Digital Marketing Maulana, Ahmad; Udayanti, Erika Devi; Sanjaya, Yusuf Yudha; Anggadiva, Rifky; Comara, Maulana Muhammadin; Muna, Mohamad Sirojul
Jurnal Transformatika Vol. 17 No. 1 (2019): July 2019
Publisher : Jurusan Teknologi Informasi Universitas Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26623/transformatika.v17i1.1423

Abstract

Current communication can be carried out without having to come face to face, without limitation of space and time, namely through the internet. the availability of internet connectivity is a necessity for all people in almost all activities. The growth of internet users influences changes in the pattern of society in communicating and socializing also has an impact on business trends, one of which is the aspect of promotion and marketing. Conventional promotion through printed media has shifted to online media. Printed media turned to digital form which was then disseminated very easily through the internet to many people in general. This paper will examine the smarsofi application or smart social wifi application that utilizes connectivity accounts from wifi users to collect data. in this case is the visitor's data from a caf ©. The main objective is to facilitate the process of collecting visitors to the caf © connected to wifi, which will then be forwarded to the distribution (broadcast) of digital promotional content.
Aplikasi Text Mining untuk Klasterisasi Aduan Masyarakat Kota Semarang Menggunakan Algoritma K-means Afida, Dita; Udayanti, Erika Devi; Kartikadarma, Etika
Jurnal Transformatika Vol. 18 No. 2 (2021): January, 2021
Publisher : Jurusan Teknologi Informasi Universitas Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26623/transformatika.v18i2.2362

Abstract

Social media is a service that is very supportive for government activities, especially in providing openness and community-based government. One form of its implementation is the Semarang City government through the Center for Community Complaints Management (P3M), whose task is to manage community complaints that enter one of the communication channels namely social media twitter. The number of public complaints that enter every day is very varied. This is certainly quite difficult for managers in categorizing complaints reports according to the relevant Local Government Organizations (OPD). This paper focuses on the problem of how to conduct clustering of community complaints. The data source comes from Twitter using the keyword "Laporhendi". Text document data from community complaint tweets was analyzed by text mining methods. A number of pre-processing of text data processing begins with the process of case folding, tokenizing, stemming, stopword removal and word robbering with tf-idf. In conducting cluster mapping, clustering algorithm will be used in dividing the complaint cluster, namely the k-means algorithm. Evaluation of cluster results is done by using purity to determine the accuracy of the results of grouping or clustering.
Pemanfaatan QuiverVision sebagai Media Pembelajaran Mewarnai dan Pengenalan Suara bagi Anak Usia Dini Udayanti, Erika Devi; Adnan, Fajrian Nur; Karima, Aisyatul
ABDIMASKU : JURNAL PENGABDIAN MASYARAKAT Vol 2, No 2 (2019): Juli 2019
Publisher : LPPM UNIVERSITAS DIAN NUSWANTORO

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33633/ja.v2i2.42

Abstract

Generasi saat ini merupakan generasi dengan tingkat peradaban yang sangat tinggi dimana anak-anak sejak lahir sudah dikenalkan dengan teknologi. Perangkat mobile khususnya smartphone menjadi perangkat yang paling banyak digunakan oleh anak- anak karena sifatnya yang mobile. Pembelajaran pada jenjang anak usia dini saat ini sangatlah berbeda dengan pendidikan anak- anak terdahulu. Guru yang notabene pendamping aktivitas belajar anak-anak disekolah harus mampu mengikuti dan menyesuaikan perubahan generasi anak didiknya. solusi yang ditawarkan dalam kegiatan ini mengadopsi aplikasi Quiver for Coloring untuk memberikan pembekalan dan sosialisasi kepada guru paud dan tk tentang peran teknologi sebagai media alternatif bermain dan belajar yang ramah untuk anak usia dini.
IMPLEMENTASI FIREBASE CLOUD MESSAGING PADA EMERGENCY CALL BERBASIS ANDROID Kartikadarma, Etika; Yutriatmansyah, Widi Widayat; Udayanti, Erika Devi; Hafidhoh, Nisa’ul
Simetris: Jurnal Teknik Mesin, Elektro dan Ilmu Komputer Vol 10, No 1 (2019): JURNAL SIMETRIS VOLUME 10 NO 1 TAHUN 2019
Publisher : Fakultas Teknik Universitas Muria Kudus

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24176/simet.v10i1.2778

Abstract

Tindak asusila atau kriminalitas merupakan satu dari banyak faktor serius yang dapat mengancam keselematan atau bahkan nyawa seseorang. Tindak kejahatan atau kriminalitas yang dilakukan baik oleh individu maupun kelompok (komplotan) dapat terjadi dimana saja dan kapan saja. Kebutuhan akan rasa aman menjadi suatu kebutuhan yang sangat penting. Kesadaran masyarakat akan kewaspadaan terhadap tindak kejahatan yang bisa terjadi pun meningkat. Perkembangan perangkat teknologi informasi dan komunikasi meningkat dengan pesat. Penelitian ini mengusulkan solusi berbasis teknologi yang dapat diimplementasikan untuk mengatasi situasi darurat korban kejahatan dengan aplikasi Emergency Call berbasis Android. Penerapan Firebasse Cloud Messaging digunakan untuk menjalankan Push Notification pada Android. Dengan pengembangan aplikasi Emergency Call ini diharapkan dapat mengurangi resiko akibat kejahatan yang lebih serius.
COVID-19 Suspects Monitoring System Based on Symptom recognition using Deep Neural Network Udayanti, Erika Devi; Kartikadharma, Etika; Firdausillah, Fahri; Ikhsan, Nur
International Journal of Engineering and Computer Science Applications (IJECSA) Vol. 2 No. 1 (2023): March 2023
Publisher : Universitas Bumigora Mataram-Lombok

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30812/ijecsa.v2i1.2073

Abstract

The outbreak of the Corona virus or COVID-19 was still a global concern even though it has been declared an endemic in several countries in the world, including Indonesia. However, with the emergence of new variants of this virus, preventive efforts continue to be made to prevent its spread. To prevent the spread of this virus, early detection was important, especially in knowing prospective clients who are positive and reactive to this virus, thus enabling early isolation measures for prospective patients who are taking action. This identification can be carried out in public areas that are the center of community activities. In this study, an intelligent system will be developed that can detect people suspected of COVID-19 through fever and breathing problem symptoms that can provide solutions to prevent the spread of this virus. Identify these symptoms through thermography-based image processing sourced from thermal camera sensors and then look for the possibility of suspected and reactive COVID19. Furthermore, the AI model was used by the early detection system of people suspected of being positive and reactive for COVID-19 using the Deep Neural Network method. This study aims to identify symptoms of fever and respiratory infection through image processing sourced from thermal camera sensors and further diagnose prospective patients who are suspected of being positive and reactive for COVID19 using the CNN method as an intelligent system for early detection of suspected positive and reactive COVID19 patientsIn the process of testing the classification training model, the performance results in the CNN classification process have an accuracy value of more than 88%. Furthermore, a comparison was made between the CNN classification and other classifications, such as SVM, Naive Bayes and Multi-Layer Perceptron (MLP). The results obtained from this comparison have an average percentage of accuracy above 80%. MLP has the lowest accuracy among its classification methods of 83.56%. CNN has the highest accuracy value compared to other methods of 88.68%. Therefore, CNN can be chosen to be the right one for use in the COVID-19 suspect detection system through the recognition of symptoms and respiratory disorders. Based on these performance measurements, the process of detecting COVID19 suspects indicated by health symptoms can be applied to real data.
Co-Authors Affandy Affandy Afida, Dita Ahmad MAULANA Aisyatul Karima ALI MUQODDAS Ali Muqoddas Aloysius Soerjowardhana Alzami, Farrikh Andriana, Wiwin Anggadiva, Rifky Anwarri, Kenza Amalia Putri Arika Norma Wahyu Dorroty Aritonang, Ivana Junita Bonifacius Vicky Indriyono Bonifacius Vicky Indriyono, Bonifacius Vicky Candra Irawan Chornelius Aneba Moza Ikratama Christiawan Yosua Hertinando Christy Atika Sari Comara, Maulana Muhammadin Dian Restu Adji Dibyo Adi Wibowo Djuniadi Djuniadi Doheir, Mohamed Dwi Puji Prabowo, Dwi Puji Erba Lutfina Erwin Yudi Hidayat Yudi Hidayat Ery Mintorini Etika Kartikadarma Etika Kartikadharma Fahri Firdausillah Fajar Agung Nugroho Fajar Agung Nugroho Fajar Agung Nugroho Fajrian Nur Adnan Farah Syadza Mufidah Febrianto, Kevin Florentina Esti Nilawati Gery Gadman Rachmad Hafidhoh, Nisa'ul Hafidhoh, Nisa?ul Hafidhoh, Nisa’ul Hafidhoh, Nisa’ul Hafidhoh, Nisa’ul Ikhsan, Nur Iqlima Zahari Karmila Karmila Kartikadharma, Etika Lutfina, Erba Megantara, Rama Aria Mellati, Pita Muhammad Agus Muljanto Muhammad Hafidz Muna, Mohamad Sirojul Natalinda Pamungkas Natalinda Pamungkas Nisa'ul Hafidhoh Nur Ikhsan Nur Iksan Pratiwi, Yunita Ayu Putra, Yogi Pratama Raden Arief Nugroho Ramadhan Rakhmat Sani Sanina Quamila Putri Sanjaya, Yusuf Yudha Soerjowardhana, Aloysius Sri Mulatsih Sri Winarno Sri Winarno Syafira Putri Yuanita Valentina Widya Suryaningtyas, Valentina Widya Widayat Yutriatmansyah, Widi Widi Widayat Yutriatmansyah Wildan Mahmud Wisnumurti, Reza Yuni Lestari Yutriatmansyah, Widi Widayat Yutriatmansyah, Widi Widayat Zahari, Iqlima  Ignasius Yoga Puji Hascaryo