Claim Missing Document
Check
Articles

Analisis Klaster Terjemahan Ayat Al-Qur’an Berbahasa Indonesia Menggunakan K-Means dan Word Embedding Adani, Rafi Malik; Adikara, Putra Pandu; Santoso, Nurudin
Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer Vol 9 No 9 (2025): September 2025
Publisher : Fakultas Ilmu Komputer (FILKOM), Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Kompleksitas dan keragaman isi Al-Qur’an menuntut metode yang efisien dan bermakna dalam kajian otomatis, khususnya untuk mendukung pemahaman tematik terhadap ayat-ayat yang relevan. Dalam penelitian ini digunakan representasi vektor kata menggunakan model Word2Vec, yang memungkinkan tiap kata dalam ayat direpresentasikan dalam bentuk numerik dengan mempertahankan hubungan semantik. Data yang digunakan berupa seluruh terjemahan ayat Al-Qur’an dalam Bahasa Indonesia, yang telah melalui tahap pra-pemrosesan seperti case folding, penghapusan tanda baca, penghapusan stopwords, stemming, dan tokenisasi. Selanjutnya, dilakukan pembentukan vektor rata-rata untuk setiap ayat dan diterapkan metode K-Means Clustering untuk mengelompokkannya. Evaluasi kualitas pengelompokan dilakukan menggunakan Silhouette Score dan visualisasi untuk analisis hasil pengelompokan. Hasil pengujian menunjukkan bahwa kombinasi metode yang digunakan belum mampu menghasilkan pengelompokan ayat yang baik dengan Silhouette Score tertinggi hanya mencapai 0,103567, yang menunjukkan kualitas klaster sangat rendah. Hasil tersebut mengindikasikan bahwa pendekatan ini belum cocok untuk pengelompokan tema ayat Al-Qur’an secara otomatis dan akurat.
Implementasi UX Sistem Manajemen Kost Berbasis Website Menggunakan Metode Human-Centered Design (Studi Kasus: Kost Putra B32 Bukit Hijau) Febriarta, Renaldy Dwisma; Adikara, Putra Pandu; Al Huda, Fais
Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer Vol 9 No 9 (2025): September 2025
Publisher : Fakultas Ilmu Komputer (FILKOM), Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Penelitian ini bertujuan untuk merancang dan mengevaluasi sistem manajemen kost berbasis website untuk Kost Putra B32 Bukit Hijau dengan pendekatan Human-Centered Design (HCD). Pengelolaan kost secara manual sebelumnya memiliki kelemahan seperti kesulitan dalam pencatatan data penghuni, penanganan pembayaran, dan pemeliharaan fasilitas. Oleh karena itu, pengembangan sistem berbasis website menjadi solusi relevan untuk meningkatkan efisiensi operasional dan kepuasan pengguna. Metode HCD diterapkan untuk memastikan desain sistem selaras dengan kebutuhan dan preferensi pengguna, melibatkan tahapan pemahaman konteks pengguna, analisis kebutuhan, perancangan solusi (wireframe dan mockup), serta evaluasi desain. Hasil pengujian usability menunjukkan tingkat efektivitas sebesar 94.89% dan efisiensi sekitar 0.222 goals/detik. Aspek kepuasan pengguna diukur menggunakan System Usability Scale (SUS) dengan nilai rata-rata 99.28, yang termasuk dalam kategori Excellent. Evaluasi User Experience Questionnaire (UEQ) juga menunjukkan hasil yang positif, dengan semua aspek (daya tarik, kejelasan, efisiensi, keandalan, stimulasi, dan kebaruan) berada dalam kategori Excellent. Dengan demikian, sistem manajemen kost berbasis website yang dirancang layak dan diterima, serta mampu meningkatkan efisiensi pengelolaan dan memberikan pengalaman pengguna yang unggul.
Analisis Sentimen Masyarakat Terhadap Fenomena Perubahan Iklim Menggunakan BERT-CNN Ravindra Rahman, Azka; Fatyanosa, Tirana Noor; Adikara, Putra Pandu
Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer Vol 9 No 9 (2025): September 2025
Publisher : Fakultas Ilmu Komputer (FILKOM), Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Perubahan iklim merupakan salah satu isu global yang paling banyak dibicarakan di media sosial, seperti X. Meskipun konsensus ilmiah menyatakan bahwa perubahan iklim disebabkan oleh aktivitas manusia, opini publik masih terbagi, dan perbedaan tersebut tidak hanya memengaruhi opini individu, tetapi juga dapat berdampak pada pengambilan kebijakan lingkungan. Untuk memahami opini publik, berbagai model NLP dikembangkan, namun tantangan pada penggunaan model NLP tradisional adalah keterbatasannya dalam menangkap informasi kontekstual dalam sebuah kalimat. Oleh karena itu, model hibrida BERT-CNN diusulkan dengan anggapan bahwa embedding kontekstual pada BERT beserta kemampuan ekstraksi fitur CNN mampu mengklasifikasikan sentimen publik terhadap isu perubahan iklim. Metode yang digunakan dimulai dengan persiapan data, perancangan model, pelatihan model, pengujian model, dan perbandingan model utama dengan model lainnya. Hasil eksperimen menunjukkan bahwa model BERT-CNN cukup baik dalam mengklasifikasikan sentimen publik terkait perubahan iklim, dibuktikan dengan nilai f1-score-nya yang sebesar 0,7197. Model juga menunjukkan kinerja pada kelas minoritas yang lebih baik dibandingkan pada model BERT atau CNN secara terpisah. Dengan demikian, penelitian ini memberi wawasan baru terhadap pengembangan metode analisis sentimen berbasis deep learning pada isu perubahan iklim.
Pencarian Ruang Warna Kulit Manusia Berdasarkan Nilai Karakteristik (λ) Matrik Window Citra Adikara, Putra Pandu; Rahman, Muh. Arif; Santosa, Edy
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 1 No 1: April 2014
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (880.856 KB) | DOI: 10.25126/jtiik.201411102

Abstract

Abstrak Perkembangan transaksi dan distribusi data yang sangat besar, terutama saat teknologi informasi dan komunikasi melalui  web bisa dijangkau oleh siapa saja menggunakan perangkat yang semakin beragam, membuat pengguna memerlukan aplikasi yang serba mudah untuk digunakan. Diantaranya adalah identifikasi obyek yang berada dalam data multimedia berupa teks, gambar maupun suara. Deteksi warna, terutama deteksi warna kulit manusia adalah tahap awal identifikasi keberadaan manusia pada citra 2 dimensi. Terdapat sejumlah metode untuk menentukan apakah suatu pixel pada gambar tersebut merupakan warna kulit manusia. Penelitian sebelumnya telah membuat ruang warna berbasis pixel diantaranya adalah ruang warna RGB, normalisasi RGB, HIS/HSV, TSL, YCbCr dll. Suatu matrik bujur sangkar NxN mempunyai nilai karakteristik (λ) sebanyak N dimana nilai masing-masing berupa bilangan real. Suatu citra dapat dipecah menjadi M matrik bujur sangkar dan kemudian dicari nilai λ  nya. Penelitian ini akan mencari ruang warna kulit manusia berdasarkan nilai karakteristik (ƛ) matrik window citra. Dari hasil pengujian hamper semua warna kulit dapat dideteksi, namun image untuk warna kulit yang tidak mencolok beberapa obyek pada image dapat ditampilkan dengan baik meskipun bukan kulit. Kata kunci: Citra Kulit, Nilai Karakteristik (λ), Matrik Window Abstract The development of the transaction and distribution of huge data, especially when the information technology and communication via the web can be reached by anyone using the increasingly diverse, making the user requires an application that completely easy to use. Among them is the identification of objects that are in the multimedia data such as text, images and sound. Color detection, particularly the detection of human skin color is an early stage identification of human presence on the 2-dimensional image. There are a number of methods to determine whether a pixel in the image is the color of human skin. Previous studies have made such pixel based color space is RGB color space, normalized RGB, HIS/HSV, TSL, YCbCr etc. An NxN square matrix has eigenvalues ​​(λ) of N where the value of each form of real numbers. An image can be broken down into a square matrix M and then sought its λ value. This study will look for human skin color space based on the value of the characteristic (ƛ) matrix image window. From the test results almost all skin colors can be detected, but the image for an inconspicuous color multiple objects in the image can be displayed well although not leather. Keywords: skin image, value of the characteristic(λ), Matrix Windows
Pencarian Produk yang Mirip Melalui Automatic Online Annotation dari Web dan Berbasiskan Konten dengan Color Histogram Bin dan Surf Descriptor Adikara, Putra Pandu; Adinugroho, Sigit; Sari, Yuita Arum
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 5 No 1: Februari 2018
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (607.144 KB) | DOI: 10.25126/jtiik.201851630

Abstract

Banyaknya situs e-commerce memberikan kemudahan bagi pengguna yang ingin mencari dan membeli suatu produk, misalnya membeli makanan, obat, alat elektronik, kebutuhan sehari-hari, dan lain-lain. Pencarian suatu produk terhadap beberapa situs e-commerce akan menjadi sulit karena banyaknya pilihan situs, banyaknya penjual (merchant/seller) yang menjual barang yang sama, dan waktu yang lama karena harus berpindah-pindah situs hingga menemukan produk yang diinginkan. Selain itu dengan adanya teknologi smartphone berkamera, augmented reality, query pencarian bisa jadi hanya berupa citra, namun pencarian produk dengan menggunakan citra pada umumnya tidak diakomodasi di situs e-commerce. Dalam penelitian ini dikembangkan sistem meta search-engine yang menggunakan query berupa citra dan berbasiskan konten untuk menggabungkan hasil pencarian dari beberapa situs e-commerce. Citra query yang tidak diketahui namanya dibangkitkan tag atau kata kuncinya melalui Google reverse image search engine. Kata kunci ini kemudian diberikan ke masing-masing situs e-commerce untuk dilakukan pencarian. Fitur yang digunakan dalam pencocokan query dengan produk adalah fitur tekstual, color histogram bin, dan keberadaan citra objek yang dicari menggunakan SURF descriptor. Fitur-fitur ini digunakan untuk menentukan relevansi terhadap hasil penelusuran. Sistem ini dapat memberikan hasil yang baik dengan precision@20 dan recall hingga 1 dengan rata-rata precision@20 dan recall masing-masing sebesar 0,564 dan 0,608, namun juga bisa gagal dengan precision@20 dan recall sebesar 0. Hasil yang kurang baik ini dikarenakan tag yang dibangkitkan terlalu umum dan situs e-commerce-pun memberikan hasil yang umum juga
Peringkasan Artikel Berbahasa Indonesia Menggunakan TextRank dengan Pembobotan BM25 Hernawan, Yurdha Fadhila; Adikara, Putra Pandu; Wihandika, Randy Cahya
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 9 No 1: Februari 2022
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jtiik.2022913765

Abstract

Penggunaan internet sebagai sumber informasi telah membawa manusia pada era one click away. Apa pun bisa diakses di mana pun kapan pun, baik secara visual maupun tidak. Namun, tidak semua informasi yang diakses selalu sesuai dengan konteks yang diinginkan. Untuk memudahkan pengguna internet dalam mendapatkan informasi yang ringkas dengan tidak merusak atau menghilangkan informasi penting, maka dibutuhkan suatu peringkasan otomatis. Salah satu cara untuk mendapatkan ringkasan pada sebuah dokumen adalah dengan mencari kumpulan kalimat penting pada dokumen yang dapat merepresentasikan dokumen asli secara keseluruhan. Metode peringkasan tersebut disebut juga dengan peringkasan ekstraktif. Pada penelitian ini, peringkasan ekstraktif dilakukan dengan memeringkatkan setiap kalimat pada sebuah dokumen dan mengambil kalimat dengan peringkat teratas sebagai ringkasan. Metode TextRank yang digunakan pada penelitian ini merepresentasikan dokumen sebagai graf, setiap kalimat dianggap sebagai node dan hubungan antara kalimat (node) merupakan nilai similarity antar kalimat. Fungsi similarity yang digunakan adalah BM25 dengan metode pemeringkatan PageRank. Panjang ringkasan yang dihasilkan sistem disesuaikan dengan besar nilai compression rate yang digunakan. Setelah membandingkan hasil ringkasan yang didapatkan sistem peringkasan otomatis dengan hasil ringkasan yang didapatkan dari expert (pakar) sebanyak 10 dokumen, penelitian ini berhasil dilakukan dengan kualitas ringkasan terbaik didapatkan pada saat penggunaan compression rate sebesar 30% dengan nilai rata-rata precision, recall, dan f-measure secara berturut-turut adalah 0,552; 0,552; dan 0,552. AbstractThe use of the internet as a source of information has brought humans to a oneclick era. Anything can be accessed anywhere, visually or not. However, every information accessed is not always match with the context itself. An automatic summarization is needed to help people to get the concise informations without ruin the context and missing the point. One way to get a summarize of the document is to find a collection of important sentences in the document that can represent the original document as a whole. That automatic text summarization method is also called extractive summarize. In this study, extractive summarization is done by checking each sentence in a document and ranking the important sentences. The TextRank method used in this study will represent the document as a graph, each sentence will be considered as a node and the relationship between sentences (nodes) is the value of similarity between sentences. The similarity function used is BM25 with the PageRank as ranking method. The resulting length of the system will be adjusted to the value of the level of compression used. After comparing the summarization result between the automatic system and an expert of 10 documents, this research is successfully carried out with the best quality is obtained when using a compression rate of 30% with an average value of precision, recall, and f-measure is 0.552; 0.552; and 0.552.  
Analisis Sentimen Ulasan Kedai Kopi Menggunakan Metode Naive Bayes dengan Seleksi Fitur Algoritme Genetika Azhar, Naziha; Adikara, Putra Pandu; Adinugroho, Sigit
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 8 No 3: Juni 2021
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jtiik.2021834436

Abstract

Di era sekarang, kedai kopi tak hanya dikenal sebagai tempat berkumpul dan menyeruput kopi saja, tetapi kedai kopi telah menjadi tempat yang nyaman untuk belajar dan bekerja. Namun, tidak semua kedai kopi memiliki kualitas yang baik sesuai dengan apa yang diharapkan pelanggan. Ulasan tentang kedai kopi dapat membantu pemilik kedai kopi untuk mengetahui bagaimana respons mengenai produk dan pelayanannya. Ulasan tersebut perlu diklasifikasikan menjadi ulasan positif atau negatif sehingga membutuhkan analisis sentimen. Terdapat beberapa tahap pada penelitian ini yaitu pre-processing untuk pemrosesan ulasan, ekstraksi fitur menggunakan Bag of Words dan Lexicon Based Features, serta mengklasifikasikan ulasan menggunakan metode Naïve Bayes dengan Algoritme Genetika sebagai seleksi fitur. Data yang digunakan pada penelitian ini sebanyak 300 data dengan 210 data sebagai data latih dan 90 data sebagai data uji. Hasil evaluasi yang didapatkan dari klasifikasi Naïve Bayes dan seleksi fitur Algoritme Genetika yaitu accuracy sebesar 0,944, precision sebesar 0,945, recall sebesar 0,944, dan f-measure sebesar 0,945 dengan menggunakan parameter Algoritme Genetika terbaik yaitu banyak generasi = 50, banyak populasi = 18, crossover rate = 1, dan mutation rate = 0. AbstractIn this era, coffee shops are not only known as a place to gather and drink coffee, but also have become a comfortable place to study and work. However, not all coffee shops are in good quality according to what customers expect. Coffee shop reviews can help coffee shop owners to find out the response to their products and services. These reviews need to be classified as positive or negative reviews so that sentiment analysis is needed. There are several steps in this study, which are pre-processing to process reviews, feature extraction using Bag of Words and Lexicon Based Features, also classifying reviews using the Naïve Bayes method with Genetic Algorithm as a feature selection. The data used in this study were 300 data with 210 data as training data and 90 data as test data. Evaluation results obtained from the Naïve Bayes classification and Genetic Algorithm feature selection are 0.944 for accuracy, 0.945 for precision, 0.944 for recall, and 0.945 for f-measure using the best Genetic Algorithm parameters which are many generations = 50, many populations = 18, crossover rate = 1, and mutation rate = 0.
Klasifikasi Kelas Kata (Part-Of-Speech Tagging) untuk Bahasa Madura Menggunakan Algoritme Viterbi Firmansyah, Ilham; Adikara, Putra Pandu; Adinugroho, Sigit
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 8 No 5: Oktober 2021
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jtiik.2021854483

Abstract

Bahasa manusia adalah bahasa yang digunakan oleh manusia dalam bentuk tulisan maupun suara. Banyak teknologi/aplikasi yang mengolah bahasa manusia, bidang tersebut bernama Natural Language Processing yang merupakan ilmu yang mempelajari untuk mengolah dan mengekstraksi bahasa manusia pada perkembangan teknologi. Salah satu proses pada Natural Language Processing adalah Part-Of-Speech Tagging. Part-Of-Speech Tagging adalah klasifikasi kelas kata pada sebuah kalimat secara otomatis oleh teknologi, proses ini salah satunya berfungsi untuk mengetahui kata-kata yang memiliki lebih dari satu makna/arti (ambiguitas). Part-Of-Speech Tagging merupakan dasar dari Natural Language Processing lainnya, seperti penerjemahan mesin (machine translation), penghilangan ambiguitas makna kata (word sense disambiguation), dan analisis sentimen. Part-Of-Speech Tagging dilakukan pada bahasa manusia, salah satunya adalah bahasa Madura. Bahasa Madura adalah bahasa daerah yang digunakan oleh suku Madura dan memiliki morfologi yang mirip dengan bahasa Indonesia. Penelitian pada Part-Of-Speech Tagging pada bahasa Madura ini menggunakan algoritme Viterbi, terdapat 3 proses untuk implementasi algoritme Viterbi pada pada Part-Of-Speech Tagging bahasa Madura, yaitu pre-processing pada data training dan testing, perhitungan data latih dengan Hidden Markov Model dan klasifikasi kelas kata menggunakan algoritme Viterbi. Kelas kata (tagset) yang digunakan untuk klasifikasi kata pada bahasa Madura sebanyak 19 kelas, kelas kata tersebut dirancang oleh pakar. Pengujian sistem pada penelitian ini menggunakan perhitungan Multiclass Confusion Matrix. Hasil pengujian sistem mendapatkan nilai micro average accuracy sebesar 0,96 dan nilai micro average precision dan recall yang sama sebesar 0,68. Precision dan recall masih dapat ditingkatkan dengan menambahkan data yang lebih banyak lagi untuk pelatihan. AbstractNatural language is a form of language used by human, either in writing or speaking form. There is a specific field in computer science that processes natural language, which is called Natural Language Processing. It is a study of how to process and extract natural language on technology development. Part-Of-Speech Tagging is a method to assign a predefined set of tags (word classes) into a word or a phrase. This process is useful to understand the true meaning of a word with ambiguous meaning, which may have different meanings depending on the context. Part-Of-Speech Tagging is the basis of the other Natural Language Processing methods, such as machine translation, word sense disambiguation, and sentiment analysis. Part-Of-Speech Tagging used in natural languages, such as Madurese language. Madurese language is a local language used by Madurese and has a similar morphology as Indonesian language. Part-Of-Speech Tagging research on Madurese language using Viterbi algorithm, consists of 3 processes, which are training and testing corpus pre-processing, training the corpus by Hidden Markov Model, and tag classification using Viterbi algorithm. The number of tags used for words classification (tagsets) on Madurese language are 19 class, those tags were designed by an expert. Performance assessment was conducted using Multiclass Confusion Matrix calculation. The system achieved a micro average accuracy score of 0,96, and micro average precision score is equal to recall of 0,68. Precision and recall can still be improved by adding more data for training.
Kombinasi Intent Classification dan Named Entity Recognition pada Data Berbahasa Indonesia dengan Metode Dual Intent and Entity Transformer Annisa, Zahra Asma; Perdana, Rizal Setya; Adikara, Putra Pandu
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 11 No 5: Oktober 2024
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jtiik.2024117985

Abstract

Pelayanan pelanggan atau customer service adalah sebuah bentuk upaya pemenuhan keinginan dan kebutuhan pelanggan yang disertai dengan ketepatan penyampaian sesuai standar perusahaan demi memenuhi harapan pelanggan. Pada beberapa kasus seperti layanan perbankan, diperlukan layanan pelanggan yang dapat diakses setiap saat dengan ketepatan dan daya tanggap tinggi. Atas kebutuhan pelayanan dengan kualitas tinggi ini, perusahaan dapat mengaplikasikan konsep pelayanan prima. Salah satu penerapan konsep kecerdasan buatan demi pelaksanaan pelayanan prima adalah penggunaan chatbot, yang memerlukan metode yang tepat bagi proses klasifikasi intensi pengguna maupun Named Entity Recognition (NER). Salah satu kekurangan dari pelaksanaan klasifikasi intensi dan NER secara terpisah terletak pada representasi numerik yang digunakan dalam tiap model. Meski menggunakan data latih dan arsitektur model yang serupa, model dapat menghasilkan representasi numerik yang berbeda dalam tahap fiturisasi, sehingga berpotensi mengurangi tingkat generalisasi model. Untuk mengatasi masalah tersebut, klasifikasi intensi dan NER dapat digabungkan dengan menggunakan mekanisme multi-task learning dalam bentuk model Dual Intent and Entity Transformer (DIET). Penelitian dilakukan dengan memanfaatkan data sekunder dari Helpdesk TIK UB, merancang model DIET menggunakan pustaka PyTorch dan Transformers, lalu mengevaluasi model DIET menggunakan f1-score. Kombinasi hyperparameter terbaik yang didapatkan adalah warm-up step sebesar 70, early stopping patience sebesar 15, weight decay sebesar 0,01, bobot loss NER sebesar 0,6, dan bobot loss klasifikasi intensi berupa 0,4. Kombinasi hyperparameter yang telah diperoleh menghasilkan kapabilitas yang berbeda apabila terdapat perubahan dalam data yang digunakan, karena kapabilitas model DIET baik dalam melakukan klasifikasi intensi maupun NER sangat bergantung terhadap data.   Abstract   Customer service is a way to fulfill the wants and needs of customers accompanied by the accuracy of delivery according to company standards in order to meet customer expectations. In some cases such as banking services, customer service is needed that can be accessed at any time with high accuracy and responsiveness. For this high-quality service requirement, companies can implement the concept of excellent service. One application of artificial intelligence for service excellence is the use of a chatbot, which requires an appropriate method for the classification of user intent and Named Entity Recognition (NER). One of the drawbacks of performing intent classification and NER separately lies in the different numerical representations used in each model. Despite using similar training data and model architecture, the models may produce different numerical representations in the featurization stage, potentially reducing the generalization ability of the model. To overcome this problem, intent and NER classification can be combined using a multi-task learning mechanism in the form of a Dual Intent and Entity Transformer (DIET) model. The research was conducted by utilizing secondary data from Helpdesk TIK UB, designing DIET models using PyTorch and Transformers libraries, then evaluating DIET models using f1-score. The best hyperparameter combination obtained is a warm-up step of 70, early stopping patience of 15, weight decay of 0.01, NER loss weight of 0.6, and intent classification loss weight of 0.4. The combination of hyperparameters that have been obtained produce different capabilities if there are changes in the data that is used because the capabilities of the DIET model in both intention and NER classification are highly dependent on the data.
Klasifikasi Intensi dengan Metode Ling Short-Term Memory pada Chatbot Bahasa Indonesia Al Farisi, Faiz Aulia; Perdana, Rizal Setya; Adikara, Putra Pandu
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 11 No 5: Oktober 2024
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jtiik.2024118000

Abstract

E-government merupakan sebuah konsep pemerintahan yang menyelenggarakan layanan publik secara digital yang didukung oleh teknologi informasi, sehingga menjadi lebih prima. Salah satu bentuk layanan publik digital yang umum ada di berbagai sektor adalah helpdesk. Helpdesk memungkinkan pengguna dapat bertanya atau melaporkan sesuatu untuk kemudian dijawab oleh staf. Permasalahan yang ada adalah ketersediaan staf yang hanya dapat menjawab pada jam kerja, sedangkan pengguna bisa jadi menemukan permasalahan yang urgent di luar jam kerja. Oleh karena itu, solusi yang ditawarkan adalah penerapan chatbot, sehingga dapat melayani kapan pun, sekaligus meringankan kerja dari staf. Penelitian ini mencoba untuk merancang salah satu komponen pada chatbot, yaitu model klasifikasi intensi, dengan metode Long Short-Term Memory. Data yang digunakan merupakan 501 teks riwayat pertanyaan dari database Helpdesk TIK UB yang termasuk ke dalam 7 kelas intensi yang ditentukan. Data akan melalui beberapa tahap prapemrosesan sebelum kemudian dilakukan pemodelan dan beberapa pengujian. Tahap pengujian meliputi pemilihan embedding yang digunakan, pemilihan teknik augmentasi data, dan penyetelan hyperparameter. Hasil dari keseluruhan pengujian, didapatkan model terbaik yang mampu menghasilkan akurasi sempurna untuk data latih dan data uji, serta loss 0,004 untuk data latih dan 0,044 untuk data uji.   Abstract   E-government is a government concept that organizes digital public services supported by information technology, so that they become more excellent. One form of digital public service that is common in various sectors is the helpdesk. Helpdesk allows users to ask questions or report something to be answered by staff. The problem that exists is the availability of staff who can only answer during working hours, while users may find urgent problems outside of working hours. Therefore, the solution offered is the implementation of a chatbot, so that it can serve at any time, while easing the work of staff. This study attempts to design one of the components of the chatbot, namely the intention classification model, using the Long Short-Term Memory method. The data used are 501 question history texts from the Helpdesk TIK UB database which fall into the 7 specified intensity classes. The data will go through several pre-processing stages before then being modeled and tested. The testing phase includes selecting the embedding used, data augmentation techniques selection, and hyperparameter tuning. The best model is obtained which can produce perfect accuracy for training data and test data, as well as a loss of 0.004 for training data and 0.044 for test data.
Co-Authors Adani, Rafi Malik Ade Kurniawan Adinda Chilliya Basuki Adinugroho, Sigit Adiyasa, Bhisma Adriansyah, Rachmat Afrizal Rivaldi Agi Putra Kharisma, Agi Putra Agus Wahyu Widodo Ahmad Fauzi Ahsani Akhmad Sa'rony Al Farisi, Faiz Aulia Al Huda, Fais Albert Bill Alroy Alimah Nur Laili Allysa Apsarini Shafhah Alqis Rausanfita Alvandi Fadhil Sabily Amaliah, Ichlasuning Diah Amar Ikhbat Nurulrachman Ananda Fitri Niasita Anang Hanafi Andina Dyanti Putri Andre Rino Prasetyo Anggraheni, Hanna Shafira Ani Budi Astuti Annisa Alifia Annisa, Zahra Asma Arsya Monica Pravina Aulia Jasmin Safira Aulia Rahma Hidayat Avisena Abdillah Alwi Azhar, Naziha Baliyamalkan, Mohammad Nafi' Barbara Sonya Hutagaol Bayu Andika Paripih Bayu Rahayudi Bryan Pratama Jocom Budi Darma Budi Darma Setiawan Candra Dewi Candra Dewi Dahnial Syauqy Daisy Kurniawaty Danang Aditya Wicaksana Dayinta Warih Wulandari Deri Hendra Binawan Dhanika Jeihan Aguinta Dheby Tata Artha Dian Eka Ratnawati Dika Perdana Sinaga Dimas Fachrurrozi Azam Dwi Suci Ariska Yanti Dwi Wahyu Puji Lestari Dyva Pandhu Adwandha Edy Santosa Eka Dewi Lukmana Sari Elmira Faustina Achmal Evilia Nur Harsanti Faiz Aulia Al Farisi Farid Rahmat Hartono Fattah, Rafi Indra Fayza Sakina Maghfira Darmawan Febriarta, Renaldy Dwisma Ferdi Alvianda Ferly Gunawan Ferly Gunawan Firdaus, Agung Firmansyah, Ilham Fitra Abdurrachman Bachtiar Franklid Gunawan Galih Nuring Bagaskoro George Alexander Suwito Gilang Widianto Aldiansyah Glenn Jonathan Satria Guedho Augnifico Mahardika Haekal, Firhan Imam Hanson Siagian Hendra Pratama Budianto Hernawan, Yurdha Fadhila Hibatullah, Farras Husain Husein Abdulbar Ichsan Achmad Fauzi Ika Oktaviandita Imam Cholisoddin Imam Cholissodin Imam Ghozali Imanuel Juventius Todo Gurning Indah Mutia Ayudita Indriati Indriati Indriati Indriya Dewi Onantya Ivan Fadilla Ivan Ivan Jesika Silviana Situmorang Jojor Jennifer BR Sianipar Jonathan Reynaldo Junda Alfiah Zulqornain Karina Widyawati Karunia Ayuningsih Katherine Ivana Ruslim Khalisma Frinta Krishnanti Dewi Laila Restu Setiya Wati Lailil Muflikhah Laksono Trisnantoro Lubis, Saiful Wardi Lusiyana Adetia Isadi Luthfi Mahendra M. Aasya Aldin Islamy M. Ali Fauzi Maghfiroh, Sofita Hidayatul Makrina Christy Ariestyani Marina Debora Rindengan Maya Novita Putri Riyanto Mayang Arinda Yudantiar Mayang Panca Rini Melati Ayuning Lestari Moch. Khabibul Karim Moh. Dafa Wardana Mohammad Fahmi Ilmi Mohammad Toriq Muh. Arif Rahman Muhammad Faiz Al-Hadiid Muhammad Fajriansyah Muhammad Iqbal Pratama Muhammad Nurhuda Rusardi Muhammad Rizaldi Muhammad Rizky Setiawan Muhammad Tanzil Furqon Muhammad Taufan Muthia Azzahra Nadhif Sanggara Fathullah Nadia Siburian Nanda Agung Putra Nanda Cahyo Wirawan Naufal Akbar Eginda Naziha Azhar Niluh Putu Vania Dyah Saraswati Novan Dimas Pratama Novanto Yudistira Nur Hijriani Ayuning Sari Nurul Hidayat Panjaitan, Mutiharis Dauber Panji Husni Padhila Pengkuh Aditya Prana Prais Sarah Kayaningtias Prakoso, Andriko Fajar Pretty Natalia Hutapea Putri Rahma Iriani Radita Noer Pratiwi Rahma Chairunnisa Raissa Arniantya Randy Cahya Wihandika Randy Cahya Wihandika Randy Ramadhan Ravindra Rahman, Azka Renata Rizki Rafi` Athallah Renaza Afidianti Nandini Restu Amara Rezky Dermawan Rhevitta Widyaning Palupi Ridho Agung Gumelar Riza Cahyani Rizal Maulana, Rizal Rizal Setya Perdana Rizal Setya Perdana Rosy Indah Permatasari Sagala, Revaldo Gemino Kantana Salsabila Insani Salsabila Rahma Yustihan San Sayidul Akdam Augusta Santoso, Nurudin Sigit Adinugroho Sigit Adinugroho Silaban, Gilbert Samuel Nicholas Silvia Ikmalia Fernanda Sindy Erika Br Ginting Sri Indrayani, Sri Sutrisno Sutrisno Tania Malik Iryana Taufan Nugraha Thariq Muhammad Firdausy Tibyani Tibyani Tirana Noor Fatyanosa, Tirana Noor Uke Rahma Hidayah Utaminingrum, Fitri Vergy Ayu Kusumadewi Vinesia Yolanda Vivin Vidia Nurdiansyah Wijanarko, Rizqi Yerry Anggoro Yohana Yunita Putri Yoseansi Mantharora Siahaan Yosua Dwi Amerta Yuita Arum Sari Yuita Arum Sari Yuita Arum Sari Yulia Kurniawati Yurdha Fadhila Hernawan Yure Firdaus Arifin Zahra Asma Annisa