Claim Missing Document
Check
Articles

Found 3 Documents
Search
Journal : Journal of Robotics and Control (JRC)

Design of Ultrasonic Sensor and Ultraviolet Sensor Implemented on a Fire Fighter Robot Using AT89S52 Prasojo, Ipin; Thanh Nguyen, Phong; tanane, Omar; Shahu, Nishith
Journal of Robotics and Control (JRC) Vol 1, No 2 (2020): March
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/jrc.1212

Abstract

A firefighter is a task given by someone or a team to extinguish a fire that occurs when building a building. The officer took the danger of fighting the fire with a fire engine equipped with a water sprayer. Because of these dangers, a robot was made to help put out the fire. This research aimed to design a fire extinguisher robot using AT89S52 microcontroller as its controller. A DC fan controlled by a relay was utilized to extinguish the fire and a fire sensor (UV-Tron) was used to detect the presence of fire. The robot was driven by motor DC. It could detect the surrounding obstacles and possessed an ultrasound-based navigation system. If the ultrasound system detects an obstacle, the robot will automatically turn without colliding the obstacle or other things around it. The result of the research showed that the proposed fire extinguisher robot can detect fire as far as 5 meters and successfully extinguish the fire.
The Design of Earthquake Detector Using Pendulum Swing Based on ATMega328 Prasojo, Ipin; Maseleno, Andino; tanane, Omar; Shahu, Nishith
Journal of Robotics and Control (JRC) Vol 2, No 3 (2021): May (Forthcoming Issue)
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Earthquake is a vibration  that occur on the surface of the earth, earthquakes are usually caused by the movement of the earth's crust (earth's plates). Earthquakes are also used to indicate the area from which the earthquake occurred. Even though our earth is solid, it always moves and earthquakes occur when the pressure caused by that movement is too large to be able to withstand. One of the effects of the earthquake vibration itself that reaches the earth's surface and if the vibration is large enough can damage buildings and other infrastructure such as roads and bridges, railroad tracks, dams and others, causing casualties and property losses. So that we can avoid the danger caused by an earthquake, it is necessary to design an earthquake detection device with a pendulum swing method based on the ATMega328 Microcontroller. The ATMega328 microcontroller is the core of all the systems that exist in this design. In the design of earthquake measuring device using infrared sensors and photodiodes. Where the infrared beam construction is determined by the pendulum which detects the swing.
Design of Automatic Watering System Based on Arduino Prasojo, Ipin; Maseleno, Andino; tanane, Omar; Shahu, Nishith
Journal of Robotics and Control (JRC) Vol 1, No 2 (2020): March
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/jrc.1213

Abstract

Food self-sufficiency is a government program that has been being actively promoted so that Indonesia can reach food independence by the end of 2019. Indonesia is a maritime country and also an agricultural country with two seasons namely rainy season and dry season. In the rainy season, food plants usually do not need to be watered, while in the dry season, the plants must be watered regularly in accordance with soil moisture conditions. Farmers usually do not grow food plants in the dry season for fear that it will not grow well. The farmer’s dependence on the season causes the production to decline and becomes an obstacle in the success of the food self-sufficiency program. An information and communication technology-based agricultural device is needed to overcome the problem. The research aimed to design a programmed microcontroller chip to control watering automatically based on soil moisture detected using a domestic soil moisture sensor. This device detects whether the soil is dry or not. The farmers do not need to do watering manually. In addition to helping farmers, the device can also be installed on plantations, seedbed nurseries, urban parks, hotels, offices, and in homes that have parks or plants that need regular watering.