Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control

Document Preprocessing with TF-IDF to Improve the Polarity Classification Performance of Unstructured Sentiment Analysis Alzami, Farrikh; Udayanti, Erika Devi; Prabowo, Dwi Puji; Megantara, Rama Aria
Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control Vol. 5, No. 3, August 2020
Publisher : Universitas Muhammadiyah Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22219/kinetik.v5i3.1066

Abstract

Sentiment analysis in terms of polarity classification is very important in everyday life, with the existence of polarity, many people can find out whether the respected document has positive or negative sentiment so that it can help in choosing and making decisions. Sentiment analysis usually done manually. Therefore, an automatic sentiment analysis classification process is needed. However, it is rare to find studies that discuss extraction features and which learning models are suitable for unstructured sentiment analysis types with the Amazon food review case. This research explores some extraction features such as Word Bags, TF-IDF, Word2Vector, as well as a combination of TF-IDF and Word2Vector with several machine learning models such as Random Forest, SVM, KNN and Naïve Bayes to find out a combination of feature extraction and learning models that can help add variety to the analysis of polarity sentiments. By assisting with document preparation such as html tags and punctuation and special characters, using snowball stemming, TF-IDF results obtained with SVM are suitable for obtaining a polarity classification in unstructured sentiment analysis for the case of Amazon food review with a performance result of 87,3 percent.
Employee Attrition and Performance Prediction using Univariate ROC feature selection and Random Forest Aris Nurhindarto; Esa Wahyu Andriansyah; Farrikh Alzami; Purwanto Purwanto; Moch Arief Soeleman; Dwi Puji Prabowo
Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control Vol. 6, No. 4, November 2021
Publisher : Universitas Muhammadiyah Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22219/kinetik.v6i4.1345

Abstract

Each company applies a contract extension to assess the performance of its employees. Employees with good performance in the company are entitled to future contracts within a certain period of time. In a pandemic time, many companies have made decisions to carry out WFH (Work from Home) activities even to Termination (Attrition) of Employment. The company's performance cannot be stable if in certain fields it does not meet the criteria required by the company. Thus, due to many things to consider in contract extension, we are proposed feature selection steps such as duplicate features, correlated features and Univariate Receiver Operating Characteristics curve (ROC) to reduce features from 35 to 21 Features. Then, after we obtained the best features, we applied into Decision Trees and Random Forest. By optimizing parameter selection using parameter grid, the research concluded that Random Forest with feature selection can predict Employee Attrition and Performance by obtain accuracy 79.16%, Recall 76% and Precision 82,6%. Thus with those result, we can conclude that we can obtain better prediction using 21 features for employee attrition and performance which help the higher management in making decisions.