Claim Missing Document
Check
Articles

Klasifikasi Keluhan Masyarakat pada Sosial Media Twitter terhadap Pelayanan Toko Online di Indonesia menggunakan Metode Cosine TF-IDF Iwan Syarif; Rengga Asmara; Nur Ulima Rusmayani
Bahasa Indonesia Vol 7 No 1 (2020): Bina Insani ICT Journal (Juni 2020)
Publisher : Lembaga Penelitian dan Pengabdian Masyarakat Universitas Bina Insani

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (460.465 KB) | DOI: 10.51211/biict.v7i1.1334

Abstract

Abstrak: Berkembangnya toko online dan transaksi online di Indonesia pada saat ini diiringidengan berbagai permasalahan seperti keluhan pada pelayanan yang membahas mengenaiaplikasi, ketanggapan dan pengiriman. Dengan adanya permasalahan tersebut, perhitunganserta penilaian keluhan yang sering didapatkan oleh masing-masing toko online sangatdiperlukan. Dengan memanfaatkan tweet masyarakat yang ditujukan kepada toko online, datatweet tersebut akan diklasifikasikan ke dalam kategori pelayanan yang telah ditentukan.Pengolahan data berupa tweet membutuhkan proses preprocessing yaitu proses untukmendapatkan keyword dari data tweet yang telah didapatkan, proses preprocessing memilikitahapan seperti tokenizing, filtering dan stemming. Keyword yang telah didapatkan diolah untukmendapatkan nilai hasil klasifikasi yang didapatkan. Proses klasifikasi kategori pelayanan padapenelitian ini menggunakan metode Cosine TF-IDF dimana metode tersebut membutuhkanbobot dan dokumen pada setiap kategori. Metode yang dikembangkan telah diaplikasikan padapenelitian ini menghasilkan prosentase proses klasifikasi kategori pelayanan menggunakanmetode Cosine TF-IDF sebesar 63.1%. Kata kunci: analisis sentimen, klasifikasi, rule based classifier, cosine similarity, TF-IDF Abstract: The development of online stores and online transactions in Indonesia at this time isaccompanied by various problems such as complaints on services that discuss applications,responsiveness and delivery. With these problems, the calculation and assessment ofcomplaints that are often obtained by each online store is very necessary. By utilizingcommunity tweets aimed at online stores, the tweet data will be classified into predeterminedservice categories. Data processing in the form of tweets requires a preprocessing process,namely the process of getting keywords from the data tweets that have been obtained, thepreprocessing process has stages such as tokenizing, filtering and stemming. The keywordsthat have been obtained are processed to obtain the classification results obtained. The servicecategory classification process in this study uses the Cosine TF-IDF method where the methodrequires weights and documents in each category. The method developed has been applied inthis study to produce a percentage of the service category classification process using theCosine TF-IDF method of 63.1%. Keywords: sentiment analysis, classification, rule based classifier, cosine similarity, TF-IDF
INTELLIGENT SYSTEM FOR AUTOMATIC CLASSIFICATION OF FRUIT DEFECT USING FASTER REGION-BASED CONVOLUTIONAL NEURAL NETWORK (FASTER R-CNN) Hasan Basri; Iwan Syarif; Sritrusta Sukaridhoto; Muhammad Fajrul Falah
Jurnal Ilmiah Kursor Vol 10 No 1 (2019)
Publisher : Universitas Trunojoyo Madura

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28961/kursor.v10i1.187

Abstract

In 2018, the Indonesian fruit exports increased by 24% from the previous year. The surge in demand for tropical fruits from non-tropical countries is one of the contributing factors for this trend. Some of these countries have strict quality requirements – the poor level quality control of fruit is an obstacle in achieving greater export yield. This is because some exporters still use manual sorting processes performed by workers, hence the quality standard varies depending on the individual perception of the workers. Therefore, we need an intelligent system that is capable of automatic sorting according to the standard set. In this research, we propose a system that can classify fruit defects automatically. Faster R-CNN (FRCNN) architecture proposed as a solution to detect the level of defect on the surface of the fruit. There are three types of fruit that we research, its mangoes (sweet fragrant), lime, and pitaya fruit. Each fruit divided into three categories (i) Super, (ii) middle, (iii) and fruit defects. We exploit join detection and video tracking to calculate and determine the quality fruit in real-time. The datasets are taken in the field, then trained using the FRCNN Framework using the Tensorflow platform. We demonstrated that this system can classify fruit with an accuracy level of 88% (mango), 83% (lime), and 99% (pitaya), with an average computation cost of 0.0131 m/s. We can track and calculate fruit sequentially without using additional sensors and check the defect rate on fruit using the video streaming camera more accurately and with greater ease.
Dimensionality Reduction Algorithms on High Dimensional Datasets Iwan Syarif
EMITTER International Journal of Engineering Technology Vol 2 No 2 (2014)
Publisher : Politeknik Elektronika Negeri Surabaya (PENS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (10447.419 KB) | DOI: 10.24003/emitter.v2i2.24

Abstract

Classification problem especially for high dimensional datasets have attracted many researchers in order to find efficient approaches to address them. However, the classification problem has become very complicatedespecially when the number of possible different combinations of variables is so high. In this research, we evaluate the performance of Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) as feature selection algorithms when applied to high dimensional datasets.Our experiments show that in terms of dimensionality reduction, PSO is much better than GA. PSO has successfully reduced the number of attributes of 8 datasets to 13.47% on average while GA is only 31.36% on average. In terms of classification performance, GA is slightly better than PSO. GA‐ reduced datasets have better performance than their original ones on 5 of 8 datasets while PSO is only 3 of 8 datasets.Keywords: feature selection, dimensionality reduction, Genetic Algorithm (GA), Particle Swarm Optmization (PSO).
Feature Selection of Network Intrusion Data using Genetic Algorithm and Particle Swarm Optimization Iwan Syarif
EMITTER International Journal of Engineering Technology Vol 4 No 2 (2016)
Publisher : Politeknik Elektronika Negeri Surabaya (PENS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (761.855 KB) | DOI: 10.24003/emitter.v4i2.149

Abstract

This paper describes the advantages of using Evolutionary Algorithms (EA) for feature selection on network intrusion dataset. Most current Network Intrusion Detection Systems (NIDS) are unable to detect intrusions in real time because of high dimensional data produced during daily operation. Extracting knowledge from huge data such as intrusion data requires new approach. The more complex the datasets, the higher computation time and the harder they are to be interpreted and analyzed. This paper investigates the performance of feature selection algoritms in network intrusiona data. We used Genetic Algorithms (GA) and Particle Swarm Optimizations (PSO) as feature selection algorithms. When applied to network intrusion datasets, both GA and PSO have significantly reduces the number of features. Our experiments show that GA successfully reduces the number of attributes from 41 to 15 while PSO reduces the number of attributes from 41 to 9. Using k Nearest Neighbour (k-NN) as a classifier,the GA-reduced dataset which consists of 37% of original attributes, has accuracy improvement from 99.28% to 99.70% and its execution time is also 4.8 faster than the execution time of original dataset. Using the same classifier, PSO-reduced dataset which consists of 22% of original attributes, has the fastest execution time (7.2 times faster than the execution time of original datasets). However, its accuracy is slightly reduced 0.02% from 99.28% to 99.26%. Overall, both GA and PSO are good solution as feature selection techniques because theyhave shown very good performance in reducing the number of features significantly while still maintaining and sometimes improving the classification accuracy as well as reducing the computation time.
Data Mining Approach for Breast Cancer Patient Recovery Tresna Maulana Fahrudin; Iwan Syarif; Ali Ridho Barakbah
EMITTER International Journal of Engineering Technology Vol 5 No 1 (2017)
Publisher : Politeknik Elektronika Negeri Surabaya (PENS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (994.12 KB) | DOI: 10.24003/emitter.v5i1.190

Abstract

Breast cancer is the second highest cancer type which attacked Indonesian women. There are several factors known related to encourage an increased risk of breast cancer, but especially in Indonesia that factors often depends on the treatment routinely. This research examines the determinant factors of breast cancer and measures the breast cancer patient data to build the useful classification model using data mining approach.The dataset was originally taken from one of Oncology Hospital in East Java, Indonesia, which consists of 1097 samples, 21 attributes and 2 classes. We used three different feature selection algorithms which are Information Gain, Fisher’s Discriminant Ratio and Chi-square to select the best attributes that have great contribution to the data. We applied Hierarchical K-means Clustering to remove attributes which have lowest contribution. Our experiment showed that only 14 of 21 original attributes have the highest contribution factor of the breast cancer data. The clustering algorithmdecreased the error ratio from 44.48% (using 21 original attributes) to 18.32% (using 14 most important attributes).We also applied the classification algorithm to build the classification model and measure the precision of breast cancer patient data. The comparison of classification algorithms between Naïve Bayes and Decision Tree were both given precision reach 92.76% and 92.99% respectively by leave-one-out cross validation. The information based on our data research, the breast cancer patient in Indonesia especially in East Java must be improved by the treatment routinely in the hospital to get early recover of breast cancer which it is related with adherence of patient.
Influence of Logistic Regression Models For Prediction and Analysis of Diabetes Risk Factors Yufri Isnaini Rochmat Maulana; Tessy Badriyah; Iwan Syarif
EMITTER International Journal of Engineering Technology Vol 6 No 1 (2018)
Publisher : Politeknik Elektronika Negeri Surabaya (PENS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (419.424 KB) | DOI: 10.24003/emitter.v6i1.258

Abstract

Diabetes is a very serious chronic. Diabetes can occurs when the pancreas doesn't produce enough insulin (a hormone used to regulate blood sugar), cause glucose in the blood to be high. The purpose of this study is to provide a different approach in dealing with cases of diabetes, that's with data mining techniques mengguanakan logistic regression algorithm to predict and analyze the risk of diabetes that is implemented in the mobile framework. The dataset used for data modeling using logistic regression algorithm was taken from Soewandhie Hospital on August 1 until September 30, 2017. Attributes obtained from the Hospital Laboratory have 11 attribute, with remove 1 attribute that is the medical record number so it becomes 10 attributes. In the data preparation dataset done preprocessing process using replace missing value, normalization, and feature extraction to produce a good accuracy. The result of this research is performance measure with ROC Curve, and also the attribute analysis that influence to diabetes using p-value. From these results it is known that by using modeling logistic regression algorithm and validation test using leave one out obtained accuracy of 94.77%. And for attributes that affect diabetes is 9 attributes, age, hemoglobin, sex, blood sugar pressure, creatin serum, white cell count, urea, total cholesterol, and bmi. And for attributes triglycerides have no effect on diabetes.
Arrhythmia Classification Using Long Short-Term Memory with Adaptive Learning Rate Hilmy Assodiky; Iwan Syarif; Tessy Badriyah
EMITTER International Journal of Engineering Technology Vol 6 No 1 (2018)
Publisher : Politeknik Elektronika Negeri Surabaya (PENS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (847.757 KB) | DOI: 10.24003/emitter.v6i1.265

Abstract

Arrhythmia is a heartbeat abnormality that can be harmless or harmful. It depends on what kind of arrhythmia that the patient suffers. People with arrhythmia usually feel the same physical symptoms but every arrhythmia requires different treatments. For arrhythmia detection, the cardiologist uses electrocardiogram that represents the cardiac electrical activity. And it is a kind of sequential data with high complexity. So the high performance classification method to help the arrhythmia detection is needed. In this paper, Long Short-Term Memory (LSTM) method was used to classify the arrhythmia. The performance was boosted by using AdaDelta as the adaptive learning rate method. As a comparison, it was compared to LSTM without adaptive learning rate. And the best result that showed high accuracy was obtained by using LSTM with AdaDelta. The correct classification rate was 98% for train data and 97% for test data.
Classification Algorithms of Maternal Risk Detection For Preeclampsia With Hypertension During Pregnancy Using Particle Swarm Optimization Muhlis Tahir; Tessy Badriyah; Iwan Syarif
EMITTER International Journal of Engineering Technology Vol 6 No 2 (2018)
Publisher : Politeknik Elektronika Negeri Surabaya (PENS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (565.13 KB) | DOI: 10.24003/emitter.v6i2.287

Abstract

Preeclampsia is a pregnancy abnormality that develops after 20 weeks of pregnancy characterized by hypertension and proteinuria.  The purpose of this research was to predict the risk of preeclampsia level in pregnant women during pregnancy process using Neural Network and Deep Learning algorithm, and compare the result of both algorithm. There are 17 parameters that taken from 1077 patient data in Haji General Hospital Surabaya and two hospitals in Makassar start on December 12th 2017 until February 12th 2018. We use particle swarm optimization (PSO) as the feature selection algorithm. This experiment shows that PSO can reduce the number of attributes from 17 to 7 attributes. Using LOO validation on the original data show that the result of Deep Learning has the accuracy of 95.12% and it give faster execution time by using the reduced dataset (eight-speed quicker than the original data performance). Beside that the accuracy of Deep Learning increased 0.56% become 95.68%. Generally, PSO gave the excellent result in the significantly lowering sum attribute as long as keep and improve method and precision although lowering computational period. Deep Learning enables end-to-end framework, and only need input and output without require for tweaking the attributes or features and does not require a long time and complex systems and understanding of the deep data on computing.
Spatio Temporal with Scalable Automatic Bisecting-Kmeans for Network Security Analysis in Matagaruda Project Masfu Hisyam; Ali Ridho Barakbah; Iwan Syarif; Ferry Astika S
EMITTER International Journal of Engineering Technology Vol 7 No 1 (2019)
Publisher : Politeknik Elektronika Negeri Surabaya (PENS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (715.88 KB) | DOI: 10.24003/emitter.v7i1.340

Abstract

Internet attacks are a frequent occurrence and the incidence is always increasing every year, therefore Matagaruda project is built to monitor and analyze internet attacks using IDS (Intrusion Detection System). Unfortunately, the Matagaruda project has lacked in the absence of trend analysis and spatiotemporal analysis. It causes difficulties to get information about the usual seasonal attacks, then which sector is the most attacked and also the country or territory where the internet attack originated. Due to the number of unknown clusters, this paper proposes a new method of automatic bisecting K-means with the average of SSE is 93 percents better than K-means and bisecting K-means. The usage of big spark data is highly scalable for processing massive data attack.
Enhanced PEGASIS using Dynamic Programming for Data Gathering in Wireless Sensor Network Mohammad Robihul Mufid; M. Udin Harun Al Rasyid; Iwan Syarif
EMITTER International Journal of Engineering Technology Vol 7 No 1 (2019)
Publisher : Politeknik Elektronika Negeri Surabaya (PENS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (900.727 KB) | DOI: 10.24003/emitter.v7i1.360

Abstract

A number of routing protocol algorithms such as Low-Energy Adaptive Clustering Hierarchy (LEACH) and Power-Efficient Gathering in Sensor Information Systems (PEGASIS) have been proposed to overcome the problem of energy consumption in Wireless Sensor Network (WSN) technology. PEGASIS is a development of the LEACH protocol, where within PEGASIS all nodes are active during data transfer rounds thus limiting the lifetime of the WSN. This study aims to propose improvements from the previous PEGASIS version by giving the name Enhanced PEGASIS using Dynamic Programming (EPDP). EPDP uses the Dominating Set (DS) concept in selecting a subset of nodes to be activated and using dynamic programming based optimization in forming chains from each node. There are 2 topology nodes that we use, namely random and static. Then for the Base Station (BS), it will also be divided into several scenarios, namely the BS is placed outside the network, in the corner of the network, and in the middle of the network. Whereas to determine the performance between EPDP, PEGASIS and LEACH, an analysis of the number of die nodes, number of alive nodes, and remaining of energy were analyzed. From the experiment result, it was found that the EPDP protocol had better performance compared to the LEACH and PEGASIS protocols in terms of number of die nodes, number of alive nodes, and remaining of energy. Whereas the best BS placement is in the middle of the network and uses static node distribution topologies to save more energy.
Co-Authors Adam Prugel-Bennett Afifah, Izza Nur Agung Muliawan Ahsan, Ahmad Syauqi Aidil Saputra Kirsan Aji , Rendra Suprobo Al Falah, Adam Ghazy Alfaqih, Wildan Maulana Akbar Ali Ridho Barakbah Alwan Fauzi Amalia Wirdatul Hidayah Amran, Osamah Abdullah Yahya Andhik Ampuh Yunanto APRIANDY, KEVIN ILHAM Ardhani, Misbahul Arna Fariza Assodiky, Hilmy Aziz, Adam Shidqul Bagas Dewangkara Bima Sena Bayu Dewantara Binti Kholifah Dadet Pramadihanto Daisy Rahmania Syarif Darmawan, Zakha Maisat Eka Desy Intan Permatasari, Desy Intan Deyana Kusuma Wardani Dian Neipa Purnamasari Dimas Bagus Santoso Dona Wahyudi Dzulfiqar, Achmad Fakhri Edelani, Renovita Edi Satriyanto Entin Martiana Kusumaningtyas Fahrudin, Tresna Maulana Fakhri, Haidar Fathoni, Kholid Fauzy, Aryazaky Iman Ferry Astika S Ferry Astika Saputra Ferry Astika Saputra Fitri Setyorini Gary Wills Gunawan, Agus Indra Hamida, Silfiana Nur Hardiyanti, Fitriani Rohmah Hasan Basri Hidayah, Amalia Wirdatul Hidayah, Nadila Wirdatul Hilmy Assodiky Hisyam, Masfu Huda, Achmad Thorikul Idris Winarno Irsal Shabirin Khoirunnisa, Asy Syaffa Kholifah, Binti Kindarya, Fabyan Kusuma, Selvia Ferdiana M Udin Harun Al Rasyid, M Udin Harun Mahardhika, Yesta Medya Masfu Hisyam Maulana, Yufri Isnaini Rochmat Mayangsari, Mustika Kurnia Mufid, Mohammad Robihul Muhammad Fajrul Falah Muhlis Tahir Nadila Wirdatul Hidayah Nana Ramadijanti, Nana Ningrum, Ayu Ahadi Novie Ayub Windarko Nur Rosyid Mubtadai, Nur Rosyid Nur Sakinah Nur Ulima Rusmayani Prasetyo Primajaya, Grezio Arifiyan Rabiatul Adawiyah Rachmawati, Oktavia Citra Resmi Reesa Akbar Rengga Asmara Rengga Asmara Riyanto Sigit, Riyanto Rizky Yuniar Hakkun Rosmaliati, Rosmaliati Rozie, Fachrul Rudi Kurniawan Rulisiana Widodo S, Ferry Astika Sa'adah, Umi Sesulihatien, Wahjoe Tjatur Setiawardhana, Setiawardhana Sritrusta Sukaridhoto Sudaryanto, Aris Sumarsono, Irwan Susanti, Puspasari Tessy Badriyah, Tessy Tresna Maulana Fahrudin Tri Harsono Ubed, Imanullah Ali Utomo, Agus Priyo Walujo, Ivana Yudith Wibowo, Prasetyo Willy Sandhika Yufri Isnaini Rochmat Maulana