Claim Missing Document
Check
Articles

Detecting Alter Ego Accounts using Social Media Mining Deyana Kusuma Wardani; Iwan Syarif; Tessy Badriyah
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol 7 No 3 (2023): Juni 2023
Publisher : Ikatan Ahli Informatika Indonesia (IAII)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29207/resti.v7i3.4919

Abstract

Alter ego is a condition of someone who creates a new character with a conscious state. Original character role play is a game to create new imaginary characters that is used as research material for identification alter ego accounts. The negative effects of playing alter ego are stress, depression, and multiple personalities. Current research only focuses on the phenomenon and impacts of a role-playing game. We propose a new method to detect accounts of alter ego players in social media, especially Twitter. We develop an application to analyze the characteristics of alter ego accounts. Psychologists can use this application to discover the characteristics of alter ego accounts that are useful for analyzing personality so that the results can be used to appropriately handle alter ego players. Most user profiles, tweets, and platforms are used to detect account Twitter. This research proposes a new method using bio features as input data. We crawled and collected 565 bios from Twitter for one month. We observe the data to search for unique words and collect them into a classification dictionary. In this research, we use the cosine similarity method because this method is popular for detecting text and has a good performance in many cases. This research could identify alter ego accounts and other types of Twitter accounts. From the detection results of alter ego accounts, it is possible to analyze the characteristics of Twitter accounts. We use a sampling technique that takes 30% of the data as testing data. According to the results of the experiment cosine similarity obtained an accuracy of 0.95.
SEGMENTATION OF LUNG CANCER IMAGE BASED ON CYTOLOGIC EXAMINATION USING THRESHOLDING METHOD Rulisiana Widodo; Tessy Badriyah; Iwan Syarif; Willy Sandhika
Jurnal Ilmiah Kursor Vol 12 No 1 (2023)
Publisher : Universitas Trunojoyo Madura

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21107/kursor.v12i01.277

Abstract

Lung cancer is the most dangerous cases which mostly attacks the man with the biggest causes of smoking. This cancer threatens the second largest death after heart attack, lung cancer cases increase significantly every year in various countries. Several methods have been established to detect lung cancer, including Computed Tomography of the thorax, sputum examination and cytology examination. The most decisive examination is through cytologic examination of the pleural fluid. However, the current state of biopsy performed by doctors does not always get a lot of specimens, making it difficult to determine the presence of cancer cells in the lungs. Cytological examination through the pleural fluid has difficulty in detecting cell images. The image of pleural fluid that has a high density between cells will produce an image with low detail, while an image with a low density will produce an image with high detail. Image segmentation is an important part in determining the cellular anatomy of pleural fluid to characterize images with cancer or normal categories. We propose the methodology of research by using group images to separate objects from other objects by highlighting important parts using image segmentation on pleural fluid of patients suspected of having lung cancer. Thresholding method used to see the comparison is Adaptive Thresholding, binary thresholding and Otsu Thresholding. The classification results of the three methods show a high accuracy of 99% on binary thresholding, then 97% accuracy on otsu thresholding and the lowest accuracy of 96% on adaptive thresholding, the three methods are considered to increase in proportion to the addition of the epoch parameter.
Semantic Information Search with Automatic Ontology Creation in Regulations National Standards for Higher Education in Indonesia Hidayah, Nadila Wirdatul; Ali Ridho Barakbah; Iwan Syarif
The Indonesian Journal of Computer Science Vol. 12 No. 3 (2023): The Indonesian Journal of Computer Science
Publisher : AI Society & STMIK Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33022/ijcs.v12i3.3207

Abstract

In Indonesia, there are around ten types of legal products that contain higher education regulations. With a large number of articles, more effort is needed when users search for links between one article and another. Based on these problems, it is necessary to have an automatic article representation search system using an automatic ontology. Ontology refers to the hierarchical structure of entities and their relationships. In this paper, the results of the development of an information retrieval system with an automated ontology will be explained. This system describes a process begins with receiving input of higher education regulatory files which are used as data samples Permendikbud No 3 of 2020. Then split the data into articles, paragraphs and contents which are then formed ontologies by building 3 detection functions (Definitive Creation, Compound Creation, and Reference Detection). System output has an accuracy of search results reaching an accuracy of 92.5%.
Water Quality Control System Based on Web Application for Monitoring Shrimp Cultivation in Sidoarjo, East Java Fariza, Arna; Setiawardhana, Setiawardhana; Dewantara, Bima Sena Bayu; Barakbah, Aliridho; Pramadihanto, Dadet; Winarno, Idris; Badriyah, Tessy; Harsono, Tri; Syarif, Iwan; Sesulihatien, Wahjoe Tjatur; Susanti, Puspasari; Huda, Achmad Thorikul; Rachmawati, Oktavia Citra Resmi; Afifah, Izza Nur; Kurniawan, Rudi; Hamida, Silfiana Nur
GUYUB: Journal of Community Engagement Vol 4, No 3 (2023)
Publisher : Universitas Nurul Jadid

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33650/guyub.v4i3.7245

Abstract

Shrimp farming plays a crucial role to the Indonesian economy, but it is facing challenges from shifting weather patterns and global warming. This research focuses on the development and implementation of a web-based water quality monitoring system for shrimp farming to address these concerns. The research, conducted in collaboration with shrimp farmers in Sidoarjo, East Java, introduces PENS Aquaculture program, which is designed to efficiently monitor pH, salinity, and temperature. The system employs Internet ofThings (IoT) technology, which allows farmers to register several ponds, analyze water parameters, and receive real-time data through tables and graphs. The research takes a mixed-methods approach, integrating quantitative data from IoT devices with qualitative insights gathered through surveys and interviews with shrimp farmers. The study aims to evaluate the influence of IoT technology on shrimp pond quality and its contribution to the production. The findings show that PENS Aquaculture application is helpful in increasing shrimp farming efficiency, providing significant insights for the fisheries and cultural sectors.
Klasifikasi Tumor Otak Menggunakan Convolutional Neural Network Fakhri, Haidar; Setiawardhana, Setiawardhana; Syarif, Iwan; Sigit, Riyanto
Jurnal Inovtek Polbeng Seri Informatika Vol 9, No 1 (2024)
Publisher : P3M Politeknik Negeri Bengkalis

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35314/isi.v9i1.3908

Abstract

Metode klasifikasi citra MRI otak yang digunakan pada penelitian ini adalah Deep Learning dengan Convolutional Neural Network (CNN) dengan 2 model skema arsitektur CNN. Model skema 1 terdapat 2 max pooling layer dan 2 hidden layer, sedangkan model skema 2 terdapat 3 max pooling layer dan 4 hidden layer.  Dataset yang digunakan memuat citra MRI otak manusia dengan total 7023 citra, dengan rincian 1621 Glioma, 1645 Meningioma, 1757 Pituitary, dan 2000 Notumor. Evaluasi F1-Score model skema 1 dan skema 2 berturut-turut: 96% dan 97%, Sedangkan untuk nilai Accuracy yaitu 98%. Hal ini menunjukkan bahwa nilai F1-Score dan Accuracy, model skema 2 lebih baik. Untuk menguji dataset digunakan 10 fold cross-validation menghasilkan nilai rata-rata Accuracy, F1-Score, Precision, dan Recall berturut-turut 0,8520, 0,8470, 0,8493 dan 0,8504, dengan standar deviasi yang kecil, yaitu berturut-turut 0,0352; 0,0346; 0,0337 dan 0,0353 yang menunjukkan bahwa penyimpangan sebaran nilai semakin mendekati nilai rata-ratanya. nilai metrik F1-score dan accuracy berturut-turut, 97,47% dan 97,39%. Hasil accuracy penelitian ini lebih tinggi dibandingkan dengan beberapa penelitian sebelumnya, yakni dari [1], [2], [3], [5], [7], dan [8], berturut-turut: 94.39%, 97.54%, 97.18%, 96.08%, 96,36%, dan 95.55%.
Development of a Mobile Application for Plant Disease Detection using Parameter Optimization Method in Convolutional Neural Networks Algorithm Alwan Fauzi; Iwan Syarif; Tessy Badriyah
EMITTER International Journal of Engineering Technology Vol 11 No 2 (2023)
Publisher : Politeknik Elektronika Negeri Surabaya (PENS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24003/emitter.v11i2.808

Abstract

Plant diseases are a serious problem in agriculture that affects both the quantity and quality of the harvest. To address this issue, authors developed a mobile software capable of detecting diseases in plants by analyzing their leaves using a smartphone camera. This research used the Convolutional Neural Networks (CNN) method for this purpose. In the initial experiments, authors compared the performance of four deep learning architectures: VGG-19, Xception, ResNet-50, and InceptionV3. Based on the results of the experiments, authors decided to use the CNN Xception as it yielded good performance. However, the CNN algorithm does not attain its maximum potential when using default parameters. Hence, authors goal is to enhance its performance by implementing parameter optimization using the grid search algorithm to determine the optimal combination of learning rate and epoch values. The experimental results demonstrated that the implementation of parameter optimization in CNN significantly improved accuracy in potato plants from 96.3% to 97.9% and in maize plants from 87.6% to 93.4%.
Autism Detection based on Deep Learning Walujo, Ivana Yudith; Iwan Syarif; Arna Fariza
The Indonesian Journal of Computer Science Vol. 13 No. 6 (2024): The Indonesian Journal of Computer Science (IJCS)
Publisher : AI Society & STMIK Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33022/ijcs.v13i6.4552

Abstract

Autism Spectrum Disorder (ASD) is a complex developmental condition that affects communication and behavior, with prevalence rates increasing significantly in recent years [1]. According to recent research, early detection remains a challenge but is essential for effective intervention. This study leverages deep learning, specifically the ResNet 34 model, to analyze facial features in children, facilitating early detection of ASD. Using cross-validation to ensure robust model performance, the approach achieved an accuracy rate of 87% with ResNet 34 and 86% with cross-validation. This study contributes to the field by offering a non-invasive diagnostic aid that can help healthcare providers recognize ASD traits through facial analysis. The findings highlight the potential of deep learning in advancing ASD detection, with future work aimed at expanding the dataset and improving model precision.
Membangun Sistem Rekomendasi Hotel dengan Content Based Filtering Menggunakan K-Nearest Neighbor dan Haversine Formula Muliawan, Agung; Badriyah, Tessy; Syarif, Iwan
Technomedia Journal Vol 7 No 2 October (2022): TMJ (Technomedia Journal)
Publisher : Pandawan Incorporation, Alphabet Incubator Universitas Raharja

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (546.579 KB) | DOI: 10.33050/tmj.v7i2.1893

Abstract

Peningkatakan pertumbuhan industri hotel pada tiap tahunnya dan preferensi konsumen yang bervariasi dalam kebutuhan layanan hotel mengakibatkan konsumen lebih konsumtif dalam memilih hotel. Kurangnya pilihan kriteria bobot pada penyedia layanan hotel mengakibatkan konsumen mengalami kesulitan dalam memilih hotel yang sesuai dengan preferensinya, sehingga diperlukan sebuah sistem rekomendasi hotel sebagai pilihan alternatif dalam memilih hotel. Dalam penelitian ini digunakan permodelan Case Based Reasoning (CBR) untuk memberikan pembelajaran kepada sistem. Pilihan dari user pada pilihan hotel secara otomatis akan disimpan ke dalam database dan dijadikan sebagai data training sehingga sistem akan mendapatkan informasi secara berkelanjutan. Pada penelitian ini diberikan tiga jenis kebutuhan antara lain Kebutuhan Prioritas (KP), Kebutuhan Umum (KU) dan Kebutuhan Tambahan (KT) dan atribut yang digunakan terdapat enam yaitu: fasilitas, lokasi, harga, tipe kamar, bintang dan skor yang sangat mempegaruhi hasil rekomendasi. Untuk setiap nilai bobot yang ada, dilakukan uji validitas bobot kepentingan menggunakan pairwise comparison matrix (PCM) sehingga nilai bobot menjadi valid dengan rentang nilai 0-1. Selain itu penerapan content based filtering menggunakan metode haversine formula dan K-Nearest Neighbor (KNN) dalam menentukan nilai terdekat dengan data training. Dari eksperimen, didapatkan hasil pengukuran performansi yang memuaskan berupa rata-rata kemiripan (similarity) sebesar 84.50% Kata kunci  : Case Based Reasoning, Content Based Filtering, Haversine Formula, K-Nearest
Evaluation of Stratified K-Fold Cross Validation for Predicting Bug Severity in Game Review Classification Mayangsari, Mustika Kurnia; Syarif, Iwan; Barakbah, Aliridho
Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control Vol. 8, No. 3, August 2023
Publisher : Universitas Muhammadiyah Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22219/kinetik.v8i3.1740

Abstract

Steam review data provides a lot of information for the game development team, either positive or negative reviews. It is essential as negative and positive reviews provide crucial information, and 7% of positive reviews contains bug reports. These bug reports were captured after the game was released, and many reports of common problems still exist. If players found an issue in the game, they could report it directly through the review feature provided by the online game platform. However, it took a long time for the development team to manually analyze and classify the reviews. This study proposed a new approach to automatically classify the reviews on Steam based on the bug severity level. Therefore, to solve this problem, we recommend a solution based on the research background indicated above. For this experiment, we analyzed reviews on two popular game titles namely, FIFA 23 and Apex Legends. We implemented three different classifiers, namely KNN, Decision Tree, and Naïve Bayes, which would be used to train a dataset to classify the bug severity level. Due to the imbalanced dataset, we performed cross-validation to reduce bias in the dataset.  Performance in this model would be evaluated using accuracy rate, precision, recall, and F1 score. As a result, the experiment showed that game reviews of different game titles achieved different accuracy scores. The game review classification for FIFA 23 performed better than the game review classification for Apex Legends. The mean accuracy score of FIFA 23 was 72% with Decision Tree and Apex Legend was 64% with KNN.
Tuberculosis Detection based on Lung X-Ray Images Using Convolutional Neural Networks (CNN) Kurniawan, Rudi; Badriyah, Tessy; Syarif, Iwan
TEKNOLOGI DITERAPKAN DAN JURNAL SAINS KOMPUTER Vol 7 No 1 (2024): June
Publisher : Universitas Nahdlatul Ulama Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33086/atcsj.v7i1.6448

Abstract

Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis, primarily affecting the lungs. Despite being preventable and curable, TB remains a significant global health issue, especially in developing countries. The success of TB treatment heavily depends on the accuracy of the diagnosis, which typically requires expertise from pulmonology or radiology specialists to interpret chest X-ray images.  This study aims to design an assistive tool for TB detection that can automatically diagnose the disease using chest X-ray data.  The study implemented a Convolutional Neural Network (CNN) architecture to analyze the X-ray images. Additionally, image preprocessing and early stopping methods were employed to enhance accuracy performance, optimize computation, and prevent overfitting.  Experiment was conducting using 75% of the data as training data to generate the model and then applied to 25% of the data as testing data. This study comparing image sizes in RGB and grayscale modes. Experimental results show that the use of early stopping has a significant impact on training time, reducing training time substantially in almost all scenarios without drastically sacrificing accuracy. Without early stopping, accuracy does tend to be higher, as seen in grayscale color mode with an image size of 128x128, where the accuracy reaches 0.992, and in RGB mode with an image size of 64x64 which reaches 0.995. However, training time also increases significantly, for example for a 299x299 image with RGB mode, the training time reaches 927 seconds. Therefore, while RGB yields slightly higher accuracy, grayscale is recommended due to significantly faster training times. Additionally, the early stopping mechanism proves effective in reducing computational time, making the training process more efficient.
Co-Authors Adam Prugel-Bennett Afifah, Izza Nur Agung Muliawan Ahsan, Ahmad Syauqi Aidil Saputra Kirsan Aji , Rendra Suprobo Al Falah, Adam Ghazy Alfaqih, Wildan Maulana Akbar Ali Ridho Barakbah Alwan Fauzi Amalia Wirdatul Hidayah Amran, Osamah Abdullah Yahya Andhik Ampuh Yunanto APRIANDY, KEVIN ILHAM Ardhani, Misbahul Arna Fariza Assodiky, Hilmy Aziz, Adam Shidqul Bagas Dewangkara Bima Sena Bayu Dewantara Binti Kholifah Dadet Pramadihanto Daisy Rahmania Syarif Darmawan, Zakha Maisat Eka Desy Intan Permatasari, Desy Intan Deyana Kusuma Wardani Dian Neipa Purnamasari Dimas Bagus Santoso Dona Wahyudi Dzulfiqar, Achmad Fakhri Edelani, Renovita Edi Satriyanto Entin Martiana Kusumaningtyas Fahrudin, Tresna Maulana Fakhri, Haidar Fathoni, Kholid Fauzy, Aryazaky Iman Ferry Astika S Ferry Astika Saputra Ferry Astika Saputra Fitri Setyorini Gary Wills Gunawan, Agus Indra Hamida, Silfiana Nur Hardiyanti, Fitriani Rohmah Hasan Basri Hidayah, Amalia Wirdatul Hidayah, Nadila Wirdatul Hilmy Assodiky Hisyam, Masfu Huda, Achmad Thorikul Idris Winarno Irsal Shabirin Khoirunnisa, Asy Syaffa Kholifah, Binti Kindarya, Fabyan Kusuma, Selvia Ferdiana M Udin Harun Al Rasyid, M Udin Harun Mahardhika, Yesta Medya Masfu Hisyam Maulana, Yufri Isnaini Rochmat Mayangsari, Mustika Kurnia Mufid, Mohammad Robihul Muhammad Fajrul Falah Muhlis Tahir Nadila Wirdatul Hidayah Nana Ramadijanti, Nana Ningrum, Ayu Ahadi Novie Ayub Windarko Nur Rosyid Mubtadai, Nur Rosyid Nur Sakinah Nur Ulima Rusmayani Prasetyo Primajaya, Grezio Arifiyan Rabiatul Adawiyah Rachmawati, Oktavia Citra Resmi Reesa Akbar Rengga Asmara Rengga Asmara Riyanto Sigit, Riyanto Rizky Yuniar Hakkun Rosmaliati, Rosmaliati Rozie, Fachrul Rudi Kurniawan Rulisiana Widodo S, Ferry Astika Sa'adah, Umi Sesulihatien, Wahjoe Tjatur Setiawardhana, Setiawardhana Sritrusta Sukaridhoto Sudaryanto, Aris Sumarsono, Irwan Susanti, Puspasari Tessy Badriyah, Tessy Tresna Maulana Fahrudin Tri Harsono Ubed, Imanullah Ali Utomo, Agus Priyo Walujo, Ivana Yudith Wibowo, Prasetyo Willy Sandhika Yufri Isnaini Rochmat Maulana