Claim Missing Document
Check
Articles

Found 38 Documents
Search

Penerapan Metode Dokumentasi Untuk Monitoring Logbook dan Presensi Mahasiswa Kerja Praktek di Politeknik Negeri Bengkalis Handrian Azhar; Muhamad Sadar; Lucky Lhaura Van FC; Pandu Pratama Putra
Jurnal Inovtek Polbeng Seri Informatika Vol 7, No 2 (2022)
Publisher : P3M Politeknik Negeri Bengkalis

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35314/isi.v7i2.2595

Abstract

Penerapan Metode Dokumentasi Untuk Monitoring logbook dan Presensi Mahasiswa Kerja Praktek (KP) di Politeknik Negeri Bengkalis diharapkan dapat memberikan solusi dari permasalahan yang ada sehingga pelaksanaan kegiatan KP dapat berjalan dengan lebih baik. Perancangan dalam membangun sistem ini menggunakan Unified Modelling Language (UML) dan perancangan interface. Aplikasi ini berbasis web dan di buat menggunakan bahasa pemrograman php, HTML, CSS, Javascript dan database MySQL. Metode yang digunakan dalam membangun aplikasi ini adalah metode waterfall, untuk proses monitoring menggunakan metode dokumentasi dan pengujian menggunakan metode black box. Hasil penelitian ini adalah sebuah aplikasi web. Kesimpulan dari penelitian ini yaitu untuk mempermudah proses monitoring mahasiswa kerja praktek secara realtime dibutuhkan sebuah aplikasi yang dapat menyimpan data presensi, logbook, catatan serta hasil penilaian KP secara online.
Dilema Ex-Officio Terkait Pencegahan Korupsi Dan Penjaminan Mutu Di Perguruan Tinggi Swasta Afred Suci; Sri Maryanti; Lucky Lhaura Van FC; Alexsander Yandra
Jurnal Penjaminan Mutu Vol 6 No 01 (2020)
Publisher : UHN IGB Sugriwa Denpasar

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (897.606 KB) | DOI: 10.25078/jpm.v6i1.1169

Abstract

Conflicts of interest are the entry point for the abuse of power and corruption. The implementation of a manipulative ex-officio system that tends to perpetuate the oligarchy will cause a corrupt behavior in the governance of private higher education institutions. To date, studies on ex-officio related to higher education governance have never been discussed academically. The purpose of this study, thus, aims to criticize the application of ex-officio and its potential consequences in the supervision system at private higher education institutions. The study used a qualitative exploratory and the literature study was employed. The result reveals that the ex-officio is a legal model used in many higher education institutions. However, in its application it can lead to conflicts of interest and abuse of power which in turn has the potential of corrupt behavior university governance.
Sosialisasi Dan Pelatihan Pengunaan E-Office Di SMA Negeri 8 Pekanbaru Yuvi Darmayunata; Febrizal Alfarasy Syam; Lucky Lhaura Van FC
ARSY : Jurnal Aplikasi Riset kepada Masyarakat Vol. 3 No. 2 (2023): ARSY : Jurnal Aplikasi Riset kepada Masyarakat
Publisher : Lembaga Riset dan Inovasi Al-Matani

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55583/arsy.v3i2.418

Abstract

SMA Negeri 8 Pekanbaru merupakan salah satu sekolah negeri di Kota Pekanbaru Provinsi Riau yang mempunyai tugas untuk melayani masyarakat dalam bidang pendidikan, dalam mengemban tugas tersebut setiap hari SMA Negeri 8 Pekanbaru sering mengelola dokumen surat masuk maupun surat keluar. Maka untuk mempermudah pengadministrasian surat dalam rangka menyediakan informasi yang cepat, dibuat sebuah perancangan sistem informasi pengelolaan surat masuk dan surat keluar yang diharapkan dapat membantu meningkatkan kinerja dalam rangka memberikan pelayanan prima terhadap masyarakat. Dengan pelatihan aplikasi akan memberikan banyak kemudahan bagi tata usaha dan dapat mempercepat proses surat menyurat. Disamping itu juga membuat surat masuk dan surat keluar tersistem sehingga tidak ada lagi kehilangan atau kesalahan dalam penomoran. Manajemen pengarsipan surat ini menggunakan framework codeigniter yang berbasis web. Hasil yang didapatkan dari membangun sistem ini adalah adanya sistem informasi yang menangani dokumen arsip surat masuk dan surat keluar, mempermudah untuk proses pengarsipan surat yang terintegrasi antar bagian dan adanya backup surat apabila surat asli hilang atau rusak. Hal tersebut diharapkan dapat membantu kegiatan di SMA Negeri 8 Pekanbaru.
Match or Mismatch of Expectation-Realization Behind the Motives in Supporting Social Entrepreneurship Programs Widayat, Prama; Suci, Afred; Maryanti, Sri; Van FC, Lucky Lhaura; Fauzi, Abu Amar; Nanda, Satria Tri
Journal of Economics, Business, and Accountancy Ventura Vol. 26 No. 3 (2023): December 2023 - March 2024
Publisher : Universitas Hayam Wuruk Perbanas

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14414/jebav.v26i3.4110

Abstract

Abundant studies regarding motives in social enterprise have been conducted but have barely explored the gaps between motivational expectations and realizations. Particularly in waste bank studies, such a study has yet to be scholarly discussed. Using expectancy theory and mismatch hypotheses, this study explored the motives in waste bank participation towards owners/managers and customers and measured the gaps between the motive expectations and realizations. Quantitative comparison tests were employed on 45 Indonesian waste bank owners/managers and 162 customers whose data were collected directly and through online surveys. The findings reveal that the most expected motive was the environmental, while the least was the economic; this went for both waste bank owners/managers and customers. The results also show that severe mismatches occurred between expectations and realizations, in which the most significant gap for waste bank owners/managers was educational, while the environmental motive was the biggest for customers. This study's findings enrich the social entrepreneurship literature by showing that the motives per se are insufficient to reveal individuals' actual situations in supporting the social programs, as disparities are very likely to occur between expectations and realities. The gap analysis in this study provides a different alternative to conducting studies related to the underlying motives for supporting social entrepreneurship programs.
KLASIFIKASI GAYA BELAJAR VISUAL-AUDIOTORYKINESTHETIC (V-A-K) MAHASISWA BERBASIS JST MENGGUNAKAN ALGORITMA PERCEPTRON Van FC, Lucky Lhaura
Digital Zone: Jurnal Teknologi Informasi dan Komunikasi Vol. 7 No. 1 (2016): Digital Zone: Jurnal Teknologi Informasi dan Komunikasi
Publisher : Publisher: Fakultas Ilmu Komputer, Institution: Universitas Lancang Kuning

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (422.852 KB) | DOI: 10.31849/digitalzone.v7i1.521

Abstract

Abstrak- Modalitas atau gaya belajar dalam proses pembelajaran mempunyai dominasi masing-masing. Ada seseorang yang dalam proses menerima informasi didominasi oleh mata dan disebut gaya belajar visual dan bila indera pendengaran yang mendominasi maka orang tersebut dikatakan memiliki gaya belajar auditori dan kalau sesorang lebih menyukai keterlibatan fisik maka dia mempunyai gaya belajar kinestetik. Apabila kita ingin mengidentifikasi gaya belajar mahasiswa pada kelas tertentu dengan cara yang lebih valid, maka sebaiknya diketahui melalui angket yang harus diisi oleh mahasiswa tersebut. Statement yang harus diisi pada angket mengarah kepada karakteristik dari masing-masing gaya belajar. Dari angket ini nanti akan ditemukan presentase mahasiswa yang mempunyai gaya belajar visual, auditori dan kinestetik. Kemudian diolah secara komputerisasi yang berbasis JST dengan metode perceptron. Kata kunci: Jaringan Syaraf Tiruan, Gaya Belajar, Metode Perceptron Abstract- Modalities or styles of learning in the learning process has dominance respectively. There is someone in the process of receiving information dominated by the eye and called a visual learning style and when the sense of hearing which dominates then the person is said to have an auditory learning style and if someone prefers physical involvement he has a kinesthetic learning style. If we want to identify the learning styles of students in a particular class in a manner that is valid, then it should be made known through a questionnaire to be completed by the student. Statement to be filled in the questionnaire leads to the characteristics of each learning style. From this questionnaire will be found the percentage of students who have learning styles of visual, auditory and kinesthetic. Then processed in a computerized neural network with perceptron method. Keywords: Artificial Neural Networks, Learning Styles, Perceptron Method
Sistem Informasi Geografis Pemetaan Kandang Perternakan Di Kabupaten Padang Pariaman Berbasis Android Rizki, Syafrika Deni; Van FC, Lucky Lhaura; Lisnawita, Lisnawita
Digital Zone: Jurnal Teknologi Informasi dan Komunikasi Vol. 7 No. 2 (2016): Digital Zone: Jurnal Teknologi Informasi dan Komunikasi
Publisher : Publisher: Fakultas Ilmu Komputer, Institution: Universitas Lancang Kuning

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (384.203 KB) | DOI: 10.31849/digitalzone.v7i2.601

Abstract

Abstrak- Perancangan aplikasi sistem informasi geografis untuk pemetaan dan pencarian Kandang Peternakan Di Kabupaten Padang Pariaman berbasis android bertujuan untuk memberikan informasi lokasi Kandang Peternakan kepada masyarakat yang ada di Kabupaten Padang Pariaman maupun masyarakat luar Kabupaten Padang Pariaman tersebut, serta memberikan informasi-informasi mengenai detail Kandang Peternakan. Sehingga diharapkan dapat di akses kapanpun dan dimana pun.Pembuatan Sistem Informasi Geografis berbasis android ini dibuat menggunakan MapInfo Professional 9.0 sebagai dasar pembuatan peta aplikasi, Eclipse sebagai dasar Aplikasi di android , dan Giscloud sebagai server penyimpanan peta secara online.Aplikasi ini diharapkan dapat dipergunakan untuk mendapatkan informasi Kandang Peternakan Di Kabupaten Padang Pariaman yang disajikan dalam bentuk sebuah aplikasi peta Dan Informasi tentang Kandang Peternakan. Aplikasi ini dapat digunakan secara online maupun offline. Kata kunci : Sistem informasi geografis , MapInfo , Eclipse, Giscloud, Android Abstract- The design of the application of geographic information system for mapping and Cages Animal Husbandry android-based In the district of Padang Pariaman to provide location information Cage Ranch to the people in the district of Padang Pariaman and communities outside Padang Pariaman district, as well as provide information about the details of the Cage Ranch. android based Geographic Information System was created using MapInfo Professional 9.0 as the basis for the map application, Eclipse as the basis of applications in the android, and Giscloud as maps online. The storage server aplication is expected to be used for get information Cage Ranch in Padang Pariaman district were presented in the form of a map application and information about the Cage Ranch. This application can be used online or offline. Keywords: geographic information system, MapInfo , Eclipse, Giscloud, Android
Implementasi jaringan syaraf tiruan untuk menilai kelayakan tugas akhir mahasiswa (studi kasus di amik bukittinggi) Lestari, Novia; Van FC, Lucky Lhaura
Digital Zone: Jurnal Teknologi Informasi dan Komunikasi Vol. 8 No. 1 (2017): Digital Zone: Jurnal Teknologi Informasi dan Komunikasi
Publisher : Publisher: Fakultas Ilmu Komputer, Institution: Universitas Lancang Kuning

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (491.936 KB) | DOI: 10.31849/digitalzone.v8i1.614

Abstract

Abstrak- Masing-masing mahasiswa telah diberikan buku panduan penulisan tugas akhir untuk penyusunan tugas akhirnya. Namun masih ditemui beberapa perbedaan pada tugas akhir mahasiswa yang telah menyelesaikan tugas akhir tersebut. Sehingga, penilaian kelayakan tugas akhir perlu dilakukan guna memperoleh hasil yang baik dan sesuai dengan format yang ada, serta layak dipublikasikan sesuai kriteria atau ketentuan yang telah ditetapkan. Untuk mempercepat proses penilaian dan pengambilan keputusan apakah tugas akhir yang dinilai tersebut layak atau tidak, tim penilai terkadang hanya melihat hasil secara menyeluruh sebagai acuan, sehingga hasil penilaianpun tidak bisa dipastikan dengan benar dan tidak objektif. Penelitian ini akan mengimplementasikan jaringan syaraf tiruan menggunakan algoritma BackPropagation untuk menilai kelayakan tugas akhir mahasiswa dengan menggunakan software Matlab 6.1. Pengujian akan dilakukan dengan berbagai pola untuk membandingkan hasil dari jaringan syaraf tiruan tersebut, agar mendapatkan hasil penilaian yang optimal apakah tugas akhir yang dinilai tersebut layak atau tidak. Kata Kunci : backpropagation, Jaringan Syaraf Tiruan, Keputusan, Tugas Akhir Abstract- Each student has been given a guide book as the guidelines to their final assignment. But in fact, the students still face the difficulties in following the guidelines and finishing their final assignment. It caused their final assignment need to be evaluate based on the format. In increasing the assessment process on how effective and proper of the assignment, usually could be found through the final conclusion of their final assignment. It may caused some mistaken assessment in objectivity. This research will be implement the neural network by using BackPropagation Algorithm in order to know how effective it is, based on the final assignment of the college students through Matlab 6.1 Software. The assessment will use some methods in comparing of the neural network, to find the final conclusion about the reasonable of the research. Keywords: Backpropagation, Decision, Final Assignment, Neural Network
Speech Recognition for English Sentences with Malay Accent Keumala Anggraini; Van FC, Lucky Lhaura; Darmayunata, Yuvi
Digital Zone: Jurnal Teknologi Informasi dan Komunikasi Vol. 13 No. 2 (2022): Digital Zone: Jurnal Teknologi Informasi dan Komunikasi
Publisher : Publisher: Fakultas Ilmu Komputer, Institution: Universitas Lancang Kuning

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31849/digitalzone.v13i2.10759

Abstract

Some countries conduct speech research using accents. One language that has a different accent is English. English is an international language that is often used to communicate with citizens of other countries. For beginner, many difficulty to translate English with accent, include malay accent. This study performs speech recognition using English and Riau Malay accents. This research use Google Recognizer to cut words in sentences, Mel Frequency Cepstral Coefficient for feature extraction, and Hidden Markov Model for classification. The accuracy of this research is 94.02%.
The Development of Stacking Techniques in Machine Learning for Breast Cancer Detection Van FC, Lucky Lhaura; Anam, M. Khairul; Bukhori, Saiful; Mahamad, Abd Kadir; Saon, Sharifah; Nyoto, Rebecca La Volla
Journal of Applied Data Sciences Vol 6, No 1: JANUARY 2025
Publisher : Bright Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47738/jads.v6i1.416

Abstract

This study addresses the challenges of accurately detecting breast cancer using machine learning (ML) models, particularly when handling imbalanced datasets that often cause model bias toward the majority class. To tackle this, the Synthetic Minority Over-sampling Technique (SMOTE) was applied not only to balance the class distribution but also to improve the model's sensitivity in detecting malignant tumors, which are underrepresented in the dataset. SMOTE was effective in generating synthetic samples for the minority class without introducing overfitting, enhancing the model's generalization on unseen data. Additionally, AdaBoost was employed as the meta model in the stacking framework, chosen for its ability to focus on misclassified instances during training, thereby boosting the overall performance of the combined base models. The study evaluates several models and combinations, with K-Nearest Neighbors (KNN) + SMOTE achieving an accuracy of 97%, precision, recall, and F1-score of 97%. Similarly, C4.5 + Hyperparameter Tuning + SMOTE reached 95% in all metrics. The stacking model with Logistic Regression (LR) as the meta model and SMOTE achieved a strong performance with 97% accuracy, precision, recall, and F1-score all at 97%. The best result was obtained using the combination of Stacking AdaBoost + Hyperparameter Tuning + SMOTE, reaching an accuracy of 98%. These findings highlight the effectiveness of combining SMOTE with stacking techniques to develop robust predictive models for medical applications. The novelty of this study lies in the integration of SMOTE and advanced stacking methods, particularly using AdaBoost and Logistic Regression, to address the issue of class imbalance in medical datasets. Future work will explore deploying this model in clinical settings for accurate and timely breast cancer detection.
Sara Detection on Social Media Using Deep Learning Algorithm Development M. Khairul Anam; Lucky Lhaura Van FC; Hamdani Hamdani; Rahmaddeni Rahmaddeni; Junadhi Junadhi; Muhammad Bambang Firdaus; Irwanda Syahputra; Yuda Irawan
Journal of Applied Engineering and Technological Science (JAETS) Vol. 6 No. 1 (2024): Journal of Applied Engineering and Technological Science (JAETS)
Publisher : Yayasan Riset dan Pengembangan Intelektual (YRPI)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37385/jaets.v6i1.5390

Abstract

Social media has become a key platform for disseminating information and opinions, particularly in Indonesia, where SARA (Ethnicity, Religion, Race, and Intergroup) issues can fuel social tensions. To address this, developing an automated system to detect and classify harmful content is essential. This study develops a deep learning model using Convolutional Neural Network (CNN) and Bidirectional Long Short-Term Memory (BiLSTM) to detect SARA-related comments on Twitter. The method involves data collection through web scraping, followed by cleaning, manual labeling, and text preprocessing. To address data imbalance, SMOTE (Synthetic Minority Over-sampling Technique) is applied, while early stopping prevents overfitting. Model performance is evaluated using precision, recall, and F1-score. The results demonstrate that SMOTE significantly improves model performance, particularly in detecting minority-class SARA comments. CNN+SMOTE achieves a accuracy of 93%, and BiLSTM+SMOTE records a recall of 88%, effectively capturing patterns in SARA and non-SARA data. With SMOTE and early stopping, the model successfully manages class imbalance and reduces overfitting. This research supports efforts to curtail hate speech on social media, especially in the Indonesian context, where SARA-related issues often dominate public discourse.