Claim Missing Document
Check
Articles

Prediksi Penjualan Ponsel Pintar menggunakan Metode Jaringan Syaraf Tiruan Backpropagation Kombinasi Particle Swarm Optimization Wildansyah Maulana Rahmat; Nurul Hidayat; Arief Andy Soebroto
Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer Vol 7 No 1 (2023): Januari 2023
Publisher : Fakultas Ilmu Komputer (FILKOM), Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

The use of smartphones in Indonesia tends to increase. Smartphone users alone have reached 28% of the total Indonesian population in 2019 and experienced an increase of 2% from the previous year. In certain months mobile phone sales can increase rapidly and may also decline. But often some phones go unsold for months and find that the selling price is decreasing. Therefore, an effort is needed to reduce the losses from this and increase profits. Taking into account the number of phones to be restocked one way to reduce losses on phones that have not been sold for a long time. Manfaat Cell is a mobile phone sales store domiciled in Karangploso, East Java. Over time some phones were not sold according to the target in the month due to the large number of goods but the interest of buyers was small, it took a plan for the number of products to be restocked, one of which was to implement a method to predict the number of goods to be restocked. The prediction system uses the backpropagation method and is optimized using particle swarm optimization. The data used is monthly Cell Benefit sales data from 2018 to 2021, with a 70% share for training data and 30% for testing data. The result of the backpropagation performance of the particle swarm optimization combination is a MAPE value of 3.453%, which is obtained from the combination of optimal parameters, namely input as many as 3, hidden as many as 3, output as many as 1, number of iterations as many as 200, inertia weight value of 0.9, and the number of pop sizes as many as 40.
Sistem Diagnosis Kerusakan pada Iphone dengan Metode Dempster Shafer Yusril Iszha Eginata; Nurul Hidayat; Arief Andy Soebroto
Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer Vol 7 No 2 (2023): Februari 2023
Publisher : Fakultas Ilmu Komputer (FILKOM), Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Smartphones are devices that have advantages over other communication tools. Damage to Smartphones is natural and normal, as well as damage to iPhones, examples of damage ranging from fast battery drain, no image on the screen, camera not working etc. However, technicians face obstacles when diagnosing iPhone defects, which results in less than optimal technician performance. This expert system uses the Dempster-Shafer method. Inferences are made based on the symptoms of existing iPhone damage, and the frequency of each symptom is determined by the Smartphone technician. From the calculation of the visible density of damage that occurs on the iPhone, the system has 20 symptoms of damage and 14 types of damage. The purpose of this study is to help technicians determine the damage that occurs on the iPhone, which will select symptoms and give the results of this study an accuracy score of 90%.
Klasifikasi Penyakit Tanaman Kacang Tanah menggunakan Metode MKNN (Modified K-Nearest Neighbor) Ninda Silvia Tri Cahyani; Nurul Hidayat; Edy Santoso
Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer Vol 7 No 3 (2023): Maret 2023
Publisher : Fakultas Ilmu Komputer (FILKOM), Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Peanuts (Arachis hypogaea) are a food crop consumed by the Indonesian people. The demand for peanuts has steadily increased to 900,000 tons, with an average annual production of 783,110 tons, or approximately 87.01%. In 2018, the value of Indonesian peanut production fell in comparison to previous years. According to the Central Statistics Agency (2018), Indonesia produced 512,198 tons of peanuts in 2018, a decrease from 638,896 tons the previous year. Several factors contribute to Indonesia's low peanut production. Pathogens such as fungi, bacteria, and nematodes attack one of them. The availability of software to assist farmers in diagnosing peanut plant diseases will be extremely beneficial in overcoming peanut crop failure caused by peanut plant disease attacks. The MKNN Modified K-Nearest Neighbor method was used in this classification of peanut plant diseases. The Modified K-Nearest Neighbor (MK-NN) method can be used to classify peanut plant diseases using two types of tests: testing the effect of the amount of training data on accuracy and testing the effect of the K value on accuracy, with 30 test data. This system is designed to assist farmers in determining the disease of peanut plants in peanut crop failures caused by attacks. System To classify with a 97% accuracy rate.
Co-Authors Achmad Affan Suprayogi Nugraha Achmad Dwi Noviyanto Achmad Igaz Falatehan Achmad Ridok Achmad Syarifudin Ade Wicaksono Adhie Indi Arsyanto Adhitya Pratama Wijayakusuma Adhiyatma Mugiprakoso Aditya Purwa Pangestu Agus Wahyu Widodo Ahmad Afif Supianto Ahmad Fuyudi Wijaya Akbar Aditya Maulana Akhmad Syururi Akhmad Wahyu Redhani Aldion Cahya Imanda Alfan Nazala Putra Alfian Himawan Alfita Nuriza Ali Syahrawardi Andi Amaliyah Maryama Andika Eka Putra Andrianto Setiawan Arief Andy Soebroto Arifandi Wahyu Widianto Arik Khusnul Khotimah Asep Ardi Herdiyanto Askia Sani Atha Milzam Ayudiya Pramisti Regitha Bambang Gunadi Barlian Henryranu Prasetio Basuki Rahmat Rialdi Bayu Febrian Putera Ammal Bayu Kusuma Pradana Bayu Rahayudi Benedict Abednego Hasibuan Bhima Arya Tristya Haryu Niswara Bryan Pratama Jocom Budi Darma Setiawan Caesaredi Rama Raharya Chandra Tio Pasaribu Christian Herlando Indra Jaya Dayu Aprellia Dwi Putri Denis Ahmad Ryfai Desy Setya Rositasari Dhatu Kertayuga Dhimas Tungga Satya Dicky Manda Putra Sidharta Didin Wahyu Utomo Dito Rizki Pramudeka Dizka Maryam Febri Shanti Dona Adittia Donald Sihombing Donald Sihombing Dwi Prasetyo Edi Siswanto Edy Santoso Eka Hery Wijaya Elan Putra Madani Elna Diaz Pradini Eric Aji Panji Kurniawan Erwan Wahyu Andrianto Erwin Bagus Nugroho Fahmiyanto Ekajaya Fakihatin Wafiyah Faris Abdi El Hakim Fariz Andri Bakhtiar Fibriliandani Nur Pratama Fikar Cevi Anggian Firmansyah Arif Maulana Fitra Abdurrachman Bachtiar Galih Putra Suwandi Ganda Adi Khotarto Greviko Bayu Kristi Gustian Ri'pi Hadi Dwi Abdullah Hamid Haryuni Siahaan Healtho Brilian Argario Hema Prasetya Antar Nusa Herlina Devi Sirait Heru Nurwarsito Hilal Imtiyaz I Gede Adi Brahman Nugraha Icha Gusti Vidiastanta Ichwanda Hamdhani Idham Triatmaja Ikhlasul Amal Faj'r Imam Cholissodin Indriati Indriati Irfan Aprison Irvan Windy Prastyo Isnaini Isnaini Januar Dwi Amanda Jiwandani Andromeda Kholif Beryl Gibran Komang Candra Brata Krisna Andryan Syahputra Effendi Krisna Wahyu Aji Kusuma Kukuh Bhaskara Kusuma Ari Prabowo Lailil Muflikhah Lisa Septian Putri Luh Putu Novita Budiarti Luqman Hakim Harum Lutfi Fanani M. Ali Fauzi Mahardeka Tri Ananta Mahdi Fiqia Hafis Marji Marji Maskiswo Addi Puspito Maulana Aditya Rahman Meriza Nadhira Atika Surya Meutya Choirunnisa Moch Cholil Mahfud Moch. Cholil Mahfud Moch. Cholil Mahfud Mochammad Faizal Satria Rahman Mochammad Taufiqi Effendi Mohamad Yusuf Arrahman Muhamad Altof Muhamad Rendra Husein Roisdiansyah Muhammad Anang Mufid Muhammad Arif Hermawan Muhammad Atabik Usman Muhammad Burhannudin Muhammad Denny Chrisna Pujangga Muhammad Fakhri Mubarak Muhammad Hasbi Wa Kafa Muhammad Kurniawan Khamdani Muhammad Regian Siregar Muhammad Resna Muhammad Rouzikin Annur Muhammad Tanzil Furqon Muhammad Vidi Mycharoka Muhammad Zainuri Aziz Mustofa Robbani Niftah Fatiha Armin Ninda Silvia Tri Cahyani Novianto Donna Prayoga Nurudin Santoso Oktavianis Kartikasari Okvio Akbar Karuniawan Priscillia Pravina Putri Sugihartono Putra Pandu Adikara Putra, Firnanda Al Islama Achyunda Putut Abrianto Rachmad Faqih Santoso Rahmat Arbi Wicaksono Ramadhan Anindya Guna Aniwara Randy Cahya Wihandika Ratih Kartika Dewi Raymond Gunito Farandy Junior Rekyan Regarsari Mardhi Putri Renaldy Senna Hutama Reynaldi Firman Tersianto Reyvaldo Aditya Pradana Reza Andria Siregar Reza Rahardian Rhayhana Putri Justitia Rhiezky Arniansya Rhyzoma Grannata Rafsanjani Ricky Marten Sahalatua Tumangger Rihandiko Hari Romadhona Rio Arifando Risda Nur Ainum Risqi Auliatin Nisyah Risqi Nur Ifansyah Rizal Setya Perdana Rizaldy Amsyar Rizki Wulyono Propana Sodiq Robertus Santoso Aji Putro Salam Maulana Sandy Ikhsan Armita Satrio Hadi Wijoyo Siti Febrianti Ramadhani Supraptoa Supraptoa Sutrisno Sutrisno Syafruddin Agustian Putra Syailendra Orthega Syndu Pramanda Galuh Widestra Tibyani Tibyani Tri Afirianto Trio Pamujo Wicaksono Tunggul Prastyo Sriatmoko Vicky Robi Wirayudha Wahyu Dwiky Rahmadan Wildan Gita Akbari Wildansyah Maulana Rahmat William Muris Parsaoran Nainggolan Yamlikho Karma Yayuk Wiwin Nur Fitriya Yori Tri Cuswantoro Yudo Juni Hardiko Yusril Iszha Eginata Yusuf Ferdiansyah Yusuf Nurcahyo Zaiful Bahar