Claim Missing Document
Check
Articles

Found 18 Documents
Search

Pengembangan puzzle square sebagai media pembelajaran interaktif menggunakan macromedia flash 8 Sabarudin Saputra; Tanti Diyah Rahmawati; Nurfitriah Safrudin
JINoP (Jurnal Inovasi Pembelajaran) Vol. 6 No. 2 (2020): November 2020
Publisher : University of Muhammadiyah Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22219/jinop.v6i2.12096

Abstract

ABSTRAK Matematika merupakan ilmu yang bersifat abstrak karena menuntut siswa mengonstruksi pengetahuan melalui proses menerjemahkan berbagai lambang. Hal ini menyebabkan perlunya media yang bersifat interaktif, menyenangkan, dan mudah diakses. Tujuan penelitian ini adalah mengembangkan media pembelajaran interaktif puzzle square menggunakan macromedia flash 8 dan menganalisis kelayakan media tersebut dalam pembelajaran Teorema Pythagoras di kelas VIII SMP Negeri 1 Maumere. Penelitian dan pengembangan ini menerapkan model ADDIE yang terdiri dari analisis masalah awal, desain model media, proses pengembangan dan revisi, penerapan atau uji coba, dan evaluasi hasil penerapan. Hasil penelitian ini yaitu dihasilkannya media berupa aplikasi pembelajaran puzzle square yang dapat diakses menggunakan komputer atau laptop. Media pembelajaran interaktif puzzle square dinyatakan baik berdasarkan rata-rata skor penilaian ahli materi dan ahli media sebesar 4,18 dan media pembelajaran interaktif puzzle square dinyatakan sangat baik berdasarkan rata-rata penilaian peserta didik mencapai 4,22. Dengan demikian media pembelajaran interaktif puzzle square layak digunakan dalam pembelajaran matematika pada materi Teorema Pythagoras untuk siswa kelas 8 SMP Negeri 1 Maumere. Kata Kunci: macromedia flash 8, media pembelajaran interaktif, puzzle square, pythagoras  ABSTRACTMathematics is an abstract science because it requires students to construct knowledge through the process of translating various symbols. This definition resulted in the need for interactive, fun and easily accessible media. The purpose of this research is to develop interactive learning media for puzzle square using macromedia flash 8 and to analyze the feasibility of these media in learning the Pythagorean Theorem in class VIII SMP Negeri 1 Maumere. This research applied research and development method using the ADDIE model which consists of initial problem analysis, media model design, development and revision processes, application or testing, and evaluation of application results. The results of this research illuminated the production of media in the form of a puzzle square learning application that can be accessed using a computer or laptop. The puzzle square interactive learning media was declared as good based on the average score of the material expert and media expert's assessment of 4.18 and the puzzle square interactive learning media was declared as very good based on the average assessment of students reaching 4.22. Thus, the interactive learning media puzzle square is suitable for use in mathematics learning on the Pythagorean Theorem material for grade 8 students of SMP Negeri 1 Maumere. Keywords: Macromedia Flash 8, Interactive Learning Media, Puzzle Square, Pythagoras
Algoritma YOLO sebagai deteksi korban akibat kerusakan geohazard menggunakan citra (computer vision) Azmi Khusnani; Adi Jufriansah; Sabarudin Saputra
Berkala Fisika Indonesia : Jurnal Ilmiah Fisika, Pembelajaran dan Aplikasinya Vol 13, No 1 (2022)
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/bfi-jifpa.v13i1.23191

Abstract

Penelitian ini bertujuan untuk melakukan identifikasi objek korban akibat kerusakan geohazard menggunakan algoritma YOLO. Alat yang digunakan pada penelitian adalah algoritma YOLO dengan bantuan Google Colab. Dataset yang digunakan berjumlah 80 objek anotasi yang terdiri dari 60 objek sebagai data latih dan 20 objek sebagai data uji dengan sumber gambar yang diperoleh dari internet. Hasil penelitian menunjukkan bahwa YOLO v4 telah mampu melakukan pendeteksian objek pada setiap objek pada gambar. Hasil ini ditunjukkan dengan munculnya bounding box, serta munculnya nilai akurasi. Nilai akurasi yang muncul menunjukkan hasil kerja mesin dalam identifikasi, semakin besar nilai akurasi maka menunjukkan bahwa hasil deteksi objek semakin baik.
Analysis of Earthquake Activity in Indonesia by Clustering Method Adi Jufriansah; Yudhiakto Pramudya; Azmi Khusnani; Sabarudin Saputra
Journal of Physics: Theories and Applications Vol 5, No 2 (2021): Journal of Physics: Theories and Applications
Publisher : Universitas Sebelas Maret

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20961/jphystheor-appl.v5i2.59133

Abstract

Indonesia is an area where three large tectonic plates meet, namely the Indo-Australian, Eurasian and Pacific plates, so that Indonesia is included in the earthquake-prone category, with 11,660 earthquake vibrations identified in the Meteorology, Climatology and Geophysics Agency (BMKG) database in 2019 The purpose of this study is to develop a classification of the distribution of earthquakes in Indonesia in 2019 based on the values of magnitude, depth, and position. This research was conducted by using the clustering method based on the K-means algorithm and the DBSCAN algorithm as a comparison. The results of the clustering show that the earthquake data analysis using the K-Means algorithm is superior with a silhouette index value of 0.837, while the DBSCAN algorithm has a silhouette index value of 0.730.
Implementation of Naïve Bayes for Fish Freshness Identification Based on Image Processing Sabarudin Saputra; Anton Yudhana; Rusydi Umar
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol 6 No 3 (2022): Juni 2022
Publisher : Ikatan Ahli Informatika Indonesia (IAII)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (746.63 KB) | DOI: 10.29207/resti.v6i3.4062

Abstract

Consumption of fish as a food requirement for the fulfillment of community nutrition is increasing. This was followed by an increase in the amount of fish caught that were sold at fish markets. Market managers must be concerned about the dispersion of huge amounts of fish in the market in order to determine the freshness of the fish before it reaches the hands of consumers. So far, market managers have relied on traditional ways to determine the freshness of fish in circulation. The issue is that traditional solutions, such as the use expert assessment, demand a human physique that quickly experiences fatigue. Technological developments can be a solution to these problems, such as utilizing image processing techniques classification method. Image processing with the use of color features is an effective method to determine the freshness of fish. The classification method used in this research is the Naive Bayes method. This study aims to identify the freshness of fish based on digital images and determine the performance level of the method. The identification process uses the RGB color value feature of fisheye images. The stages of fish freshness identification include cropping, segmentation, RGB value extraction, training, and testing. The classification data are 210 RGB value of extraction images which are divided into 147 data for training and 63 data for testing. The research data were divided into fresh class, started to rot class, and rotted class. The research shows that the Naive Bayes algorithm can be used in the process of identifying the freshness level of fish based on fisheye images with a test accuracy rate of 79.37%.
WORKSHOP PENGENALAN EDLINK SEBAGAI MEDIA PEMBELAJARAN ONLINE DI IKIP MUHAMMADIYAH MAUMERE Sabarudin Saputra; Aang Anwarudin; Fitrah Juliansyah; Rezki Ramdhani; Anton Yudhana; Rusydi Umar
RESWARA: Jurnal Pengabdian Kepada Masyarakat Vol 3, No 2 (2022)
Publisher : Universitas Dharmawangsa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.46576/rjpkm.v3i2.1899

Abstract

Media pembelajaran merupakan alat untuk menyampaikan pesan atau rangsangan pada proses belajar mengajar agar dapat menimbulkan keinginan untuk belajar. Media pembelajaran dapat berupa media pembelajaran online yang digunakan sebagai perantara proses pembelajaran sehingga memenuhi kebijakan Pembelajaran Jarak Jauh (PJJ) selama masa pandemi covid-19. Edlink merupakan media pembelajaran online yang digunakan oleh mitra kegiatan workshop yaitu IKIP Muhammadiyah Maumere. IKIP Muhammadiyah Maumere menggunakan Edlink sebagai media pembelajaran online antara dosen dan mahasiswanya. Sosialisasi penggunaan Edlink telah dilakukan pada masa Orientasi Kehidupan Kampus (OKK) tetapi tidak maksimal berdasarkan hasil survei sebelum kegiatan. Pihak kampus berkolaborasi dengan Magister Informatika Universitas Ahmad Dahlan melaksanakan kegiatan workshop pengenalan Edlink sebagai media pembelajaran online. Kegiatan workshop bertujuan untuk mengenalkan Edlink kepada mahasiswa baru IKIP Muhmmadiyah Maumere sebelum proses perkuliahan berlangsung. Peserta kegiatan berjumlah 120 mahasiswa baru periode 2021-2022. Tahapan kegiatan dimulai dengan survei pemahaman awal peserta, analisis tingkat pemahaman peserta, melakukan workshop, dan melakukan proses evaluasi. Metode evaluasi menggunakan angket penilaian tingkat pemahaman peserta dan dianalisis menggunakan rata-rata skor penilaian yang diberikan oleh peserta pada setiap pernyataan angket. Berdasarkan hasil evaluasi diperoleh nilai rata-rata total skor sebesar 4,35 dengan kriteria sangat paham dan persentasi sebesar 87,09%.
AI Big Data System to Predict Air Quality for Environmental Toxicology Monitoring Jufriansah, Adi; Khusnani, Azmi; Pramudya, Yudhiakto; Sya’bania, Nursina; Leto, Kristina Theresia; Hikmatiar, Hamzarudin; Saputra, Sabarudin
Journal of Novel Engineering Science and Technology Vol. 2 No. 01 (2023): Journal of Novel Engineering Science and Technology
Publisher : The Indonesian Institute of Science and Technology Research

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.56741/jnest.v2i01.314

Abstract

Pollutants in the air have a detrimental effect on both human existence and the environment. Because it is closely linked to climate change and the effects of global warming, research on air quality is currently receiving attention from a variety of disciplines. The science of forecasting air quality has evolved over time, and the actions of different gases (hazardous elements) and other components directly affect the health of the ecosystem. This study aims to present the development of a prediction system based on artificial intelligence models using a database of air quality sensors.This study develops a prediction model using machine learning (ML) and a Decision Tree (DT) algorithm that can enable decision harmonization across different industries with high accuracy. Based on pollutant levels and the classification outcomes from each cluster's analysis, statistical forecasting findings with a model accuracy of 0.95 have been achieved. This may act as a guiding factor in the development of air quality policies that address global consequences, international rescue efforts, and the preservation of the gap in air quality index standardization.
The Effectiveness of Chatgpt in Completing Astronomy Lectures: Building Awareness of Its Use Hikmatiar, Hamzarudin; Sya’bania, Nursina; Jayadin, Jayadin; Kasman, Risqah Amaliah; Imranah, Imranah; Sahlan, Sahlan; Saputra, Sabarudin
Jurnal Pendidikan Fisika Vol 12, No 2 (2024): PENDIDIKAN FISIKA
Publisher : Universitas Muhammadiyah Makassar

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26618/jpf.v12i2.13587

Abstract

The use of ChatGPT provides new opportunities for students to deepen their understanding of the course materials and overcome the obstacles they may encounter. The study of astronomy itself includes material that studies the universe, but students tend to minimize the related knowledge. The emergence of open AI products is considered a good solution to address the acceleration of specialized student learning in tasks. This research aims to find out whether ChatGPT has benefits for students in completing astronomy lecture assignments at the Muhammadiyah University of Maumere. This is seen from how often students use ChatGPT. The research method used is a mixed method that combines quantitative and qualitative analysis. Quantitative data is obtained from questionnaires which are presented in the form of numerical data, while qualitative data is additional information obtained through conversations between researchers and research sources. Data collection is carried out using an app that is shared with students through Google Forms after ChatGPT is applied to complete college tasks. This type of activity is considered to have excellent benefits for the completion of tasks in education. Based on the research results, it was found that 13 or 65% of the total respondents stated that ChatGPT was very good to use in completing tasks. Apart from that, using ChatGPT was also considered effective in completing astronomy lecture assignments because 50% of students stated that using ChatGPT was very effective in solving astronomy problems, while the other 50% chose only effective. Based on these findings, it is fundamental that ChatGPT has benefits for students to help solve lecture problems and can be a recommendation for other users provided they always pay attention to the ethics of its use.
Graphical User Interface (GUI) for Face Detection Using Viola-Jones Algorithm Saputra, Sabarudin; Akbar, Muhammad; Hikmatiar, Hamzarudin
Bincang Sains dan Teknologi Vol. 4 No. 01 (2025): Bincang Sains dan Teknologi
Publisher : The Indonesian Institute of Science and Technology Research

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.56741/bst.v4i01.768

Abstract

Face detection is an essential part of many applications, such as security systems, social networking platforms, and human-computer interaction. In order to detect human faces, this work investigates the application of the Viola-Jones algorithm in a graphical user interface (GUI) system created with Matlab. The Viola-Jones algorithm is a cutting-edge real-time face detection technique that uses AdaBoost learning to choose the most important features, Haar-like features, and an integral picture for quick feature computation. Fifteen randomly chosen photos from the internet with both single and numerous faces were used to test the system. The algorithm's efficacy in face detection is demonstrated by the results, which show an average accuracy of 89.86%. Nevertheless, other restrictions were noted, such as blocked faces, non-frontal facial angles, and subpar identification in dimly lit environments. These difficulties draw attention to how outside variables affect detection accuracy and point to possible areas for improvement, such using sophisticated preprocessing techniques or combining the algorithm with cutting-edge machine learning approaches. This study highlights the need for more research to increase the Viola-Jones algorithm's robustness in a variety of complicated circumstances while reaffirming its applicability.
Forecasting the Magnitude Category Based on The Flores Sea Earthquake Jufriansah, Adi; Khusnani, Azmi; Saputra, Sabarudin; Suwandi Wahab, Dedi
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol 7 No 6 (2023): December 2023
Publisher : Ikatan Ahli Informatika Indonesia (IAII)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29207/resti.v7i6.5495

Abstract

Earthquakes are a phenomenon that is still a mystery in terms of predicting events, one of which is the magnitude. As technology develops, there are many algorithms that can be used as approaches in earthquake forecasting. In the context of magnitude forecasting, the application of GaussianNB, Random Forest, and SVM has the potential to reveal these patterns and relationships in the data. With the six main phases of this research, namely data acquisition, data pre-processing, feature selection, model training, forecast result evaluation, and performance analysis, this study is expected to contribute to the development of more accurate and effective earthquake forecasting methods. From these results we first obtain the result that the GaussianNB model has a relatively simple and fast method in training its model. However, the weakness lies in the assumption of a Gaussian distribution, which may not always suit the complex and diverse characteristics of earthquake data. Second, Random Forest, this method can increase accuracy and overcome the overfitting problem that occurs when forecasting magnitudes. In contrast to GaussianNB, it tends to result in models with greater complexity and requires more time to compute. The third option is SVM, which has both benefits and drawbacks that must be taken into account. The capacity of SVM to separate data that has both linear and nonlinear separation is one of its key advantages; nevertheless, the main drawback is that it is sensitive to hyperparameter adjustments.
Kesiapan dan Keamanan Infrastruktur Penyelenggaraan Rekam Medis Elektronik di RSUD Kabupaten Kediri Jayanto, Deni Luvi; Herfin, Melky; Akbar, Muhammad; Saputra, Sabarudin; Djusmin, Vicky Bin; Zuliana, Ni’matu; Ardila, Ninda Mulya Ike; Poonwong, Prakasit; Bawias, Juan Sebastian Caesario
Jurnal Sains, Nalar, dan Aplikasi Teknologi Informasi Vol. 4 No. 2 (2025)
Publisher : Department of Informatics Universitas Islam Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20885/snati.v4.i2.40288

Abstract

Teknologi telah menjadi kebutuhan dasar dan pokok manusia serta telah digunakan di semua aspek kehidupan, terutama di bidang kesehatan, seperti di rumah sakit. RSUD Kabupaten Kediri (RSKK) berupaya menjalankan RME secara penuh namun masih mengalami kendala jaringan dan membuat perangkat dan pelayanan menjadi lumpuh sehingga membutuhkan analisis penyebabnya. Tujuan penelitian ini untuk menganalisis keamanan rekam medis elektronik yang ditinjau dari infrastruktur yang meliputi VLAN, topologi, server, backup dan keamanan jaringan yang meliputi proteksi jaringan dan antivirus. Jenis penelitian ini menggunakan deskriptif kualitatif dengan populasi dan sampel 2 petugas IT di RSKK dengan teknik sampling jenuh. Hasil penelitian menunjukkan bahwa infrastruktur jaringan menggunakan topologi star dan tree dengan server lokal yang memiliki genset untuk cadangan listrik apabila dibutuhkan yang terhubung melalui konektivitas PTP (Point to Point), namun belum menerapkan VLAN untuk segmentasi jaringan. Proses pencadangan data dilakukan rutin setiap 24 jam, namun proteksi jaringan masih menggunakan WPA2-PSK. Rekomendasi diberikan untuk meningkatkan keamanan melalui penggantian koneksi kabel dan penerapan VLAN dengan memberikan IP Address, serta pemisahan akses untuk perangkat mobilitas. Kesimpulannya, infrastruktur telah cukup memadai untuk mendukung rekam medis elektronik dengan beberapa perbaikan, terutama pada aspek keamanan. Saran diberikan untuk memperbarui perlindungan jaringan agar lebih andal terhadap ancaman keamanan siber.