Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Diophantine Journal of Mathematics and Its Applications

Peramalan Jumlah Penumpang LRT Sumsel dengan Metode Exponential Smoothing Lailiyah, Riski Rahmatul; Agustiani, Riza
Diophantine Journal of Mathematics and Its Applications Vol. 1 No. 1 (2022)
Publisher : UNIB Press

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33369/diophantine.v1i1.23994

Abstract

Forecasting is critical in the pandemic sector as part of the effort to adapt the post-pandemic system, particularly in transportation. This research carried out on the South Sumatra Integrated Railroad (LRT) in the post-pandemic Covid-19 period. Forecasting is done in this study using the exponential smoothing method using alpha that is α=0.1, α=0.5, and α= 0.9. Comparison with the smallest error using the exponential smoothing method dropped the choice at alpha 0.1 with the smallest error calculation value. Forecasting using the exponential smoothing method with 0.1 alpha sample data on the number of LRT Sumsel passengers during the Covid-19 period in 2020 produces a forecast of 66,538 passengers with an error rate of Mean Absolute Deviation (MAD)=9,486, Mean Square Error (MSE)=1,150, and Mean Absolute Percentage Error (MAPE)=24.58%. Meanwhile, from the sampel data on the number of South Sumatra LRT passengers on post-pandemic Covid-19 period in 2022, it produced a forecast of 187,566 passengers with Mean Absolute Deviation (MAD) = 25,816, Mean Square Error (MSE) = 9,477, and Mean Absolute Percentage Error (MAPE) = 16.60%.
Implementasi Algoritma Greedy pada Pewarnaan Wilayah Peta Kecamatan Gelumbang Muara Enim Al Jufri, Khuzaimah; Agustiani, Riza
Diophantine Journal of Mathematics and Its Applications Vol. 2 No. 1 (2023)
Publisher : UNIB Press

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33369/diophantine.v2i01.28347

Abstract

A map becomes more attractive and easier to read when it is colored. However, excessive use of color can make the map ineffective. Gelumbang Subdistrict was chosen because its map had not yet been colored. Graph theory can be applied to the problem of map region coloring. Gelumbang Subdistrict is represented by a dual graph consisting of 23 vertices and 53 edges. The Greedy Algorithm was chosen as the solution to the coloring optimization problem for the Gelumbang Subdistrict map, resulting in a minimum coloring that uses four colors to represent all 23 villages within the subdistrict.