p-Index From 2021 - 2026
5.591
P-Index
Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : Building of Informatics, Technology and Science

Stacking Machine Learning Approach for Predicting Thermal Stability of Zinc–Metal Organic Frameworks (Zn-MOF) Pratama, Ananta Surya; Irnanda, Muhammad Diva; Umam, Taufiqul; Nugroho, Dandy Prasetyo; Azies, Harun Al
Building of Informatics, Technology and Science (BITS) Vol 7 No 2 (2025): September 2025
Publisher : Forum Kerjasama Pendidikan Tinggi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/bits.v7i2.8329

Abstract

Thermal stability is a fundamental parameter that determines the feasibility of Metal Organic Frameworks (MOF) for high-temperature industrial applications, including catalysis, gas purification, and energy storage. Experimental evaluation of thermal stability, while accurate, is often costly and time-consuming, highlighting the need for computational prediction models that are both efficient and dependable. This study develops a Quantitative Structure Property Relationship (QSPR) model using a stacking ensemble regression framework to predict the thermal stability of Zn-MOFs. The stacking approach combines Linear Regression, Lasso Regression, and Huber Regression as base learners, with Linear Regression serving as the meta-model, thereby leveraging the complementary strengths of individual algorithms. Results demonstrate that the stacking ensemble consistently outperformed all single models, delivering highly reliable predictions that remained stable across multiple validation scenarios. Furthermore, external validation with experimental data confirmed the model’s robustness and its ability to generalize beyond the training dataset. These findings underline the reliability of stacking as not only a tool for improving accuracy but also for ensuring predictive stability and reproducibility. The study highlights the potential of machine learning, particularly ensemble methods, as a powerful and trustworthy predictive framework for the rational design of thermally stable MOFs, offering both scientific and industrial significance in sustainable energy applications.
Co-Authors Achmad Wahid Kurniawan Achmad Wahid Kurniawan Adhitya Nugraha Agus Suharsono Akrom, Muhamad Alfa Trisnapradika, Gustina Alzami, Farrikh Ananda, Imanuel Khrisna Andrean, Muhammad Niko Anwar Efendi Nasution Aprilyani Nur Safitri Ardytha Luthfiarta Ariyanto, Noval Ayu Febriana Dwi Rositawati Ayu Pertiwi Ayu Pertiwi Bambang Widjanarko Otok Brilianti Rochmanto, Hani Brilianto, Rivaldo Mersis Budi, Setyo Dea Trishnanti Dea Trishnanti Devi Putri Isnarwaty Dikaputra, Ishak Bintang Elvira Mustikawati P.H Fahmi Amiq Fawwaz Atha Rohmatullah Firmansyah, Gustian Angga Fitriani, Fenny Gangga Anuraga Ganiswari, Syuhra Putri Guruh Fajar Shidik Gustina Alfa Trisnapradika Hani Brilianti Rochmanto Herawati, Wise Herowati, Wise Hidayat, Novianto Hidayat, Novianto Nur Irnanda, Muhammad Diva Ishak Bintang Dikaputra Isnarwaty, Devi Putri ISWAHYUDI ISWAHYUDI Junta Zeniarja Kharisma, Ni Made Kirei Megantara, Rama Aria Moch Anjas Aprihartha Muhamad Akrom Muhammad Naufal Muhammad Naufal, Muhammad Muljono Muljono Noor Ageng Setiyanto, Noor Ageng Noval Ariyanto Novianto Hidayat Nugroho, Dandy Prasetyo Nur Safitri, Aprilyani Prabowo, Wahyu Aji Eko Pratama, Ananta Surya Pravesti, Cindy Asli Pulung Nurtantio Andono Purhadi Purhadi Putra, Permana Langgeng Wicaksono Ellwid Rahman, Irfan Fauzia Rahmawati Erma Standsyah Ramadhan Rakhmat Sani Rohmatullah, Fawwaz Atha Safitri, Aprilyani Nur Sari Ayu Wulandari Setyo Budi Sri Winarno Sri Winarno Sudibyo, Usman Supriadi Rustad Trishnanti, Dea Trisnapradika, Gustina Alfa Umam, Taufiqul Usman Sudibyo Vivi Mentari Dewi Wahyu Wisnu Wardana Wise Herawati Wise Herowati Zahro, Azzula Cerliana Zain, Affa Fahmi Zami, Farrikh Al