p-Index From 2021 - 2026
11.311
P-Index
This Author published in this journals
All Journal TEKNIK INFORMATIKA Syntax Jurnal Informatika Jurnal Ilmu Komputer dan Agri-Informatika SITEKIN: Jurnal Sains, Teknologi dan Industri CESS (Journal of Computer Engineering, System and Science) Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) RABIT: Jurnal Teknologi dan Sistem Informasi Univrab Jurnal Informatika Jurnal CoreIT JURNAL MEDIA INFORMATIKA BUDIDARMA Indonesian Journal of Artificial Intelligence and Data Mining Seminar Nasional Teknologi Informasi Komunikasi dan Industri INOVTEK Polbeng - Seri Informatika JURNAL INSTEK (Informatika Sains dan Teknologi) Jurnal Informatika Universitas Pamulang Jurnal Nasional Komputasi dan Teknologi Informasi JURIKOM (Jurnal Riset Komputer) JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika) JOISIE (Journal Of Information Systems And Informatics Engineering) Building of Informatics, Technology and Science Progresif: Jurnal Ilmiah Komputer Zonasi: Jurnal Sistem Informasi Journal of Applied Engineering and Technological Science (JAETS) Jurnal Tekinkom (Teknik Informasi dan Komputer) JOURNAL OF INFORMATION SYSTEM MANAGEMENT (JOISM) Indonesian Journal of Electrical Engineering and Computer Science JOURNAL OF INFORMATION SYSTEM RESEARCH (JOSH) Journal of Computer System and Informatics (JoSYC) Jurnal Sistem Komputer dan Informatika (JSON) JUKI : Jurnal Komputer dan Informatika TIN: TERAPAN INFORMATIKA NUSANTARA Jurnal Teknik Informatika (JUTIF) Jurnal Restikom : Riset Teknik Informatika dan Komputer Information System Journal (INFOS) Jurnal Computer Science and Information Technology (CoSciTech) Jurnal UNITEK Bulletin of Computer Science Research KLIK: Kajian Ilmiah Informatika dan Komputer Jurnal Informatika Teknologi dan Sains (Jinteks) Malcom: Indonesian Journal of Machine Learning and Computer Science Jurnal Teknik Indonesia Jurnal Informatika: Jurnal Pengembangan IT Jurnal Komtika (Komputasi dan Informatika)
Claim Missing Document
Check
Articles

KLASIFIKASI PENYAKIT GINJAL KRONIS MENGGUNAKAN INFORMATION GAIN DAN LVQ Putri, Widya Maulida; Budianita, Elvia; Syafria, Fadhilah; Afrianty, Iis
Journal of Information System Management (JOISM) Vol. 7 No. 1 (2025): Juni
Publisher : Universitas Amikom Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24076/joism.2025v7i1.2102

Abstract

Penyakit Ginjal Kronis (PGK) terjadi ketika fungsi ginjal menurun secara bertahap selama lebih dari tiga bulan tanpa penyebab yang jelas. Penelitian ini bertujuan mengklasifikasikan PGK dengan menggunakan seleksi fitur Information Gain dan Learning Vector Quantization (LVQ). Dataset yang digunakan terdiri dari 1659 data dengan 53 atribut. Proses penelitian meliputi preprocessing data, penerapan SMOTE Oversampling, seleksi fitur Information Gain, dan penerapan model LVQ. Pengujian menghasilkan akurasi tertinggi sebesar 93,37% tanpa seleksi fitur, serta 36 fitur terpilih dengan threshold 0,3 setelah seleksi fitur. Learning rate digunakan antara 0,1 hingga 0,9, min learning rate 0,001, dan pengurangan alpha 0,1. Penggunaan SMOTE dan LVQ meningkatkan nilai presisi, recall, dan f1 score, tetapi akurasi menurun menjadi 84,59%. Hasil ini menunjukkan bahwa metode LVQ efektif dalam klasifikasi penyakit ginjal kronis, membantu ahli identifikasi penyakit ginjal kronis menggunakan data mining dan Jaringan Syaraf Tiruan.
PENGARUH TEKNIK PENYEIMBANGAN DATA PADA KLASIFIKASI PENYAKIT NAFLD DENGAN ALGORITMA SVM Faska, Ridho Mahardika; Gusti, Siska Kurnia; Budianita, Elvia; Syafria, Fadhilah
Jurnal Informatika Teknologi dan Sains (Jinteks) Vol 7 No 2 (2025): EDISI 24
Publisher : Program Studi Informatika Universitas Teknologi Sumbawa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.51401/jinteks.v7i2.5849

Abstract

Non-Alcoholic Fatty Liver Disease (NAFLD) merupakan penyakit hati kronis yang prevalensinya terus meningkat secara global, termasuk di Indonesia, dengan faktor risiko utama seperti obesitas, diabetes melitus, dan dislipidemia. Deteksi dini NAFLD menjadi tantangan penting karena metode konvensional seperti biopsi hati dan pencitraan memiliki keterbatasan dalam hal biaya, risiko invasif, dan kepraktisan. Penelitian ini bertujuan untuk mengembangkan model klasifikasi NAFLD menggunakan algoritma Support Vector Machine (SVM) dengan memanfaatkan dataset dari Kaggle yang terdiri dari 10 variabel dan 17.549 data. Untuk mengatasi masalah ketidakseimbangan kelas, diterapkan teknik oversampling seperti SMOTE, ADASYN, dan Random Oversampling (ROS) untuk melihat performa akurasi. Hasil penelitian menunjukkan bahwa SMOTE memberikan performa terbaik dengan akurasi tertinggi mencapai 78,70% pada kernel RBF, ROS dengan akurasi 78,18% dan ADASYN dengan akurasi 76,86%. Penelitian ini menyimpulkan bahwa pemilihan teknik oversampling data dan parameter yang tepat sangat penting dalam meningkatkan efektivitas model untuk menangani data tidak seimbang, sehingga dapat berkontribusi pada pengembangan metode deteksi NAFLD yang lebih efisien dan non-invasif.
Klasifikasi Kondisi Janin Menggunakan Algoritma K-Nearest Neighbors dan Teknik SMOTE Berdasarkan Data Kardiotogram Dede Fadillah; Haerani, Elin; Wulandari, Fitri; Syafria, Fadhilah
Bulletin of Computer Science Research Vol. 5 No. 4 (2025): June 2025
Publisher : Forum Kerjasama Pendidikan Tinggi (FKPT)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/bulletincsr.v5i4.585

Abstract

Fetal health is a crucial aspect in reducing infant mortality rates, where cardiotocography (CTG) is used to monitor fetal condition through recordings of fetal heart rate and uterine contractions. However, manual interpretation of CTG data still faces challenges, particularly due to imbalanced class distribution. This study aims to develop a classification model for fetal conditions using the K-Nearest Neighbors (K-NN) algorithm combined with the Synthetic Minority Over-sampling Technique (SMOTE). The dataset used, sourced from Kaggle, consists of 2,126 CTG examinations categorized into three classes: Normal, Suspect, and Pathological. The data processing follows the Knowledge Discovery in Databases (KDD) process, including data selection, cleaning, normalization, splitting, balancing with SMOTE, and classification using K-NN. The model was evaluated using four training-testing split ratios (70:30, 80:20, 85:15, and 90:10) with accuracy and macro F1-score as metrics. The results indicate that the 85:15 split ratio achieved the highest accuracy of 89.7%, while the 90:10 ratio yielded the highest macro F1-score of 0.83. These findings suggest that the 85:15 ratio offers an optimal balance between model training and evaluation, whereas the highest F1-score at 90:10 reflects greater model sensitivity to minority classes. The combination of K-NN and SMOTE proved effective in addressing data imbalance and supports model stability in the overall classification process of fetal conditions.
Penerapan Metode ADASYN Dalam Mengatasi Imbalanced Data Untuk Klasifikasi Penyakit Stroke Menggunakan Support Vector Machine Alwaliyanto; Siska Kurnia Gusti; Iis Afrianty; Fadhilah Syafria
Bulletin of Computer Science Research Vol. 5 No. 4 (2025): June 2025
Publisher : Forum Kerjasama Pendidikan Tinggi (FKPT)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/bulletincsr.v5i4.612

Abstract

Stroke is one of the leading causes of death and disability worldwide, making it essential to develop classification models that can assist in early and accurate diagnosis. This study aims to implement the Support Vector Machine (SVM) algorithm with three types of kernels linear, polynomial, and Radial Basis Function (RBF) to classify stroke disease data. The Adaptive Synthetic Sampling (ADASYN) method is employed to address the class imbalance problem, while model training and evaluation are carried out using 5-Fold Cross-Validation to ensure stable and reliable results. The findings indicate that ADASYN successfully improves the model’s sensitivity to stroke cases (the minority class), as reflected by an increase in recall and F1-score, despite a slight decrease in overall accuracy a common trade-off in handling imbalanced data. The linear kernel (after ADASYN) achieved the best performance after imbalance handling, with an average AUC-ROC of 0.8333, recall of 0.7827, and F1-score of 0.2181 for the stroke class. Although the F1-score remains relatively low, it improved compared to the pre-ADASYN results, indicating better detection of stroke cases. The implementation was conducted using Google Colab, which also contributed to efficient data processing and visualization. Overall, the results demonstrate that the combination of SVM and ADASYN is effective in enhancing the model’s sensitivity to minority classes and is well-suited for medical data classification tasks, particularly in the early diagnosis of stroke using machine learning approaches.
Penerapan Information Gain Untuk Seleksi Fitur Pada Klasifikasi Jenis Kelamin Tulang Tengkorak Menggunakan Backpropagation Khair, Nada Tsawaabul; Afrianty, Iis; Syafria, Fadhilah; Budianita, Elvia; Gusti, Siska Kurnia
Bulletin of Computer Science Research Vol. 5 No. 4 (2025): June 2025
Publisher : Forum Kerjasama Pendidikan Tinggi (FKPT)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/bulletincsr.v5i4.637

Abstract

Forensic anthropology and skull analysis play a crucial role in the biological identification of individuals, including sex determination. This study aims to improve the accuracy of gender classification based on skull structure by combining the Information Gain feature selection method with the Backpropagation algorithm. The dataset used is the craniometric data compiled by William W. Howells, consisting of 2,524 samples with 85 measurement features. The preprocessing stage includes data selection, data cleaning, and normalization. Feature selection was conducted using the Information Gain method with three threshold values: 0.01, 0.05, and 0.1, resulting in 79, 46, and 38 selected features, respectively. The model was evaluated using the K-Fold Cross Validation method with K=10 and K=20. The highest accuracy of 93.91% was achieved at the 0.01 threshold using the Backpropagation architecture [79:119:1], a learning rate of 0.01, and K=20. These results demonstrate that feature selection using Information Gain enhances the performance of the Backpropagation model by eliminating irrelevant features and minimizing the risk of overfitting.
Perbandingan Akurasi Arsitektur EfficientNet-B0, VGG16, dan Inception V3 Dalam Deteksi Tumor Ginjal Pada Citra CT-Scan Muhammad Fahri; Yanto, Febi; Syafria, Fadhilah; Abdillah, Rahmad
Bulletin of Computer Science Research Vol. 5 No. 4 (2025): June 2025
Publisher : Forum Kerjasama Pendidikan Tinggi (FKPT)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/bulletincsr.v5i4.670

Abstract

Kidney dysfunction can trigger the development of various diseases, including kidney tumors. Early detection of kidney tumors is very important to increase the effectiveness of treatment and the chances of patient recovery. The use of deep learning technology in medical image classification has become a promising approach, especially in detecting abnormalities in the kidney organ through CT-Scan images. This study compares the performance of three Convolutional Neural Network (CNN) architectures, namely EfficientNet-B0, Inception-V3, and VGG16, in detecting kidney tumors. The dataset used was obtained from the kaggle website, namely CT-scan images with normal and tumor classes and divided by a ratio of training  data and test data of 80:20. The hyperparameter used is Stochastic Gradient Descent (SGD) with a learning rate of 0.001 and 0.0001. The evaluation was carried out using a confusion matrix with metrics of accuracy, precision, recall, and F1-score . According to the test outcomes, the VGG16 model configured with a 0.001 learning rate achieved the highest classification performance, recording 99.46% accuracy, precision, recall, and F1-score.
EVALUASI PERBANDINGAN PERFORMANSI LVQ 1, LVQ 2, DAN LVQ 3 DALAM KLASIFIKASI JENIS KELAMIN MENGGUNAKAN TULANG TENGKORAK DARMILA; IIS AFRIANTY; SUWANTO SANJAYA; RAHMAD ABDILLAH; IWAN ISKANDAR; FADHILAH SYAFRIA
Jurnal INSTEK (Informatika Sains dan Teknologi) Vol 7 No 2 (2022): OCTOBER
Publisher : Department of Informatics Engineering, Faculty of Science and Technology, Universitas Islam Negeri Alauddin, Makassar, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24252/instek.v7i2.32659

Abstract

Klasifikasi merupakan teknik pengelompokkan data sesuai dengan karakteristik data yang telah ditentukan. Hasil performansi akurasi dapat menjadi ukuran keakuratan metode yang digunakan dalam proses klasifikasi. Teknik pengambilan data yang tidak sesuai dapat mengurangi hasil akurasi. Pada penelitian ini menggunakan metode Learning Vector Quantization (LVQ) 1, 2, dan 3 untuk melihat keakuratan metode klasifikasi dengan menggunakan teknik pengambilan data sampling. Data yang digunakan merupakan data pengukuran tulang tengkorak laki-laki dan perempuan yang berjumlah 2524 data. Pada LVQ 1 mendapatkan akurasi terbaik yaitu 91.39% dengan learning rate 0.1, 0.4, 0.7, 0.9. LVQ 2 mendapatkan akurasi terbaik 77.05% dengan learning rate 0.9 dan window 0.2. LVQ 3 mendapatkan akurasi terbaik yaitu 80.04% dengan learning rate 0.7, window 0.1, dan epsilon 0.3. Hal ini menunjukkan bahwa LVQ 1 lebih tepat untuk diterapkan terhadap multi-fitur pada dataset William W. Howells Craniometric dibandingkan LVQ 2 dan LVQ 3.
PENERAPAN METODE INFORMATION GAIN DAN LEARNING VECTOR QUANTIZATION 3 PADA KLASIFIKASI PENYAKIT GINJAL Aprima, Muhammad Dzaky; Budianita, Elvia; Syafria, Fadhilah; Afrianty, Iis
Information System Journal Vol. 8 No. 01 (2025): Information System Journal (INFOS)
Publisher : Universitas Amikom Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24076/infosjournal.2025v8i01.2117

Abstract

Penyakit Ginjal Kronis (PGK) adalah penyakit yang ditunjukkan dengan turunnya fungsi ginjal yang disebabkan oleh penumpukan sisa metabolik dan berakibat tidak berfungsinya ginjal. Prediksi penyakit ini dengan data mining berperan penting dalam upaya pencegahan penyakit ini. Penelitian ini menerapkan seleksi fitur information gain pada metode Learning Vector Quantization 3 (LVQ3) dalam mengklasifikasikan penyakit ginjal kronis. Pengujian dilakukan 5 skenario pengujian dengan jumlah data sebanyak 1659 data dan 53 atribut. Seleksi fitur menerapkan information gain dengan threshold 0,3 dengan 36 fitur terpilih dan 0,7 dengan 33 fitur terpilih. Model diuji dengan kombinasi parameter learning rate dan window serta dievaluasi menggunakan akurasi, presisi, recall, dan F1-Score. Hasil akurasi tertinggi diperoleh tanpa menerapkan seleksi fitur sebesar 92,77%. Setelah seleksi fitur, akurasi menurun menjadi 86,45%. Kombinasi SMOTE dan seleksi fitur pada threshold 0,3 menurunkan akurasi hingga 81,64%. Hasil penelitian berhasil menerapkan LVQ 3 dalam klasifikasi penyakit ginjal kronis.
IMPLEMENTASI LEARNING VECTOR QUANTIZATION 2 DAN INFORMATION GAIN UNTUK KLASIFIKASI PENYAKIT GINJAL KRONIS Zabihullah, Fayat; Budianita, Elvia; Syafria, Fadhilah; Afrianty, Iis
Information System Journal Vol. 8 No. 01 (2025): Information System Journal (INFOS)
Publisher : Universitas Amikom Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24076/infosjournal.2025v8i01.2118

Abstract

Penyakit ginjal kronis terjadi ketika ginjal gagal mempertahankan metabolisme dan keseimbangan tubuh, serta memiliki risiko kematian yang tinggi. Analisis dan prediksi menggunakan teknik klasifikasi data dapat membantu mengurangi risiko tersebut. Penelitian ini bertujuan untuk mengklasifikasikan penyakit ginjal kronis dengan menggabungkan metode seleksi fitur Information Gain dan algoritma Learning Vector Quantization 2 (LVQ2). Dataset yang digunakan terdiri dari 1.659 data dengan 53 atribut dan 1 label kelas. Tahapan penelitian meliputi preprocessing, seleksi fitur, normalisasi, dan klasifikasi. Seleksi fitur dilakukan berdasarkan nilai Information Gain dengan threshold tertentu. Model diuji dengan kombinasi parameter learning rate dan window, serta dievaluasi menggunakan akurasi, presisi, recall, dan F1-score. Hasil terbaik diperoleh tanpa seleksi fitur dengan akurasi 93,98%. Setelah seleksi fitur, akurasi menurun sedikit menjadi 93,37%. Kombinasi Smote dan seleksi fitur meningkatkan presisi, recall, dan F1 score, namun menurunkan akurasi hingga menjadi 80,00% pada threshold 0,7 dengan fitur terpilih 33.
Perbandingan Inisialisasi Bobot Random dan Nguyen-Widrow Pada Backpropagation Dalam Klasifikasi Penyakit Diabetes Guswanti, Widya; afrianty, iis; budianita, elvia; syafria, fadhilah
Jurnal Informatika: Jurnal Pengembangan IT Vol 10, No 2 (2025)
Publisher : Politeknik Harapan Bersama

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30591/jpit.v10i2.8618

Abstract

Diabetes is a metabolic disorder that occurs when the pancreas is unable to produce adequate amounts of insulin or the body has difficulty in utilizing it optimally. This condition has the potential to cause various health complications. Therefore, early diagnosis of diabetes is very important to reduce the mortality rate due to these complications. Backpropagation Neural Network (BPNN) is an approach in Artificial Neural Network (ANN) that is commonly applied for disease classification, including diabetes. However, the BPNN method has drawbacks, namely its slow convergence rate and the possibility of getting stuck at a local minimum due to random weight initialization. To overcome these problems, this study applies the Nguyen-Widrow weight initialization method to improve the performance of BPNN in diabetes classification. The data source in this study comes from Kaggle, consisting of 768 data with 8 parameters. Model testing was conducted using k-fold cross-validation with K=10, and exploring various numbers of neurons in the hidden layer and learning rate (lr). The results showed that weight initialization using the Nguyen-Widrow method improved the accuracy of BPNN compared to random weight initialization. The best model was obtained with lr 0.001 and 15 neurons in the hidden layer, resulting in an accuracy of 91.23%, higher than the random weight initialization which only reached 89.91%. Thus, the Nguyen-Widrow method is proven effective in improving the performance of BPNN for diabetes classification.Diabetes merupakan gangguan metabolik yang terjadi ketika pankreas tidak mampu menghasilkan insulin dalam jumlah yang memadai atau tubuh mengalami kesulitan dalam memanfaatkannya secara optimal. Kondisi ini berpotensi menimbulkan beragam komplikasi kesehatan. Oleh karena itu, diagnosis dini penyakit diabetes sangat penting untuk menekan angka kematian akibat komplikasi tersebut. Backpropagation Neural Network (BPNN) adalah pendekatan dalam Jaringan Syaraf Tiruan (JST) yang umum diterapkan untuk klasifikasi penyakit, termasuk diabetes. Namun, metode BPNN memiliki kekurangan, yaitu laju konvergensinya yang lambat dan kemungkinan terjebak pada minimum lokal akibat inisialisasi bobot yang dilakukan secara random. Untuk mengatasi permasalahan tersebut, penelitian ini menerapkan metode inisialisasi bobot Nguyen-Widrow guna meningkatkan performa BPNN dalam klasifikasi diabetes. Sumber data dalam penelitian ini berasal dari Kaggle, terdiri dari 768 data dengan 8 parameter. Pengujian model dilakukan menggunakan k-fold cross-validation dengan K=10, serta mengeksplorasi berbagai jumlah neuron dalam hidden layer dan learning rate (lr). Hasil penelitian menunjukkan bahwa inisialisasi bobot menggunakan metode Nguyen-Widrow meningkatkan akurasi BPNN dibandingkan dengan inisialisasi bobot random. Model terbaik diperoleh dengan lr 0,001 dan 15 neuron pada hidden layer, menghasilkan akurasi sebesar 91,23%, lebih tinggi dibandingkan inisialisasi bobot random yang hanya mencapai 89,91%. Dengan demikian, metode Nguyen-Widrow terbukti efektif dalam meningkatkan performa BPNN untuk klasifikasi diabetes.
Co-Authors Abdul Aziz Abdullah, Said Noor Abdussalam Al Masykur Adrian Maulana Adzhima, Fauzan Afriyanti, Liza Agung Syaiful Rahman Agus Buono Agustina, Auliyah Ahmad Paisal Aji Pangestu Adek Akbar, Lionita Asa Alfin Hernandes Alwaliyanto Alwis Nazir Alwis Nazir Alwis Nazir Alwis Nazir Alwis Nazir Alwis Nazir Amalia Hanifah Artya Aminuyati Andre Suarisman Aprima, Muhammad Dzaky Ariq At-Thariq Putra Baehaqi Bib Paruhum Silalahi Boni Iqbal Che Hussin, Ab Razak Darmila Dede Fadillah Deny Ardianto Devi Julisca Sari Dina Septiawati Dodi Efendi Eka Pandu Cynthia Elin Haerani Elin Haerani Elin Haerani Elin Haerani Elin Haerani Elin Haerani Elin Haerani Elin Hearani Ellin Haerani Elvia Budianita Faska, Ridho Mahardika Fatma Hayati Fauzan Adzim Febi Nur Salisah Febi Yanto Felian Nabila Fitra Lestari Fitri Insani Fitri Insani Fitri Wulandari Fratiwi Rahayu Gusrifaris Yuda Alhafis Gusti, Siska Kurnia Guswanti, Widya Habibi Al Rasyid Harpizon Hafez Almirza Hafsyah Hara Novina Putri Harni, Yulia Hertati Ibnu Afdhal Ihda Syurfi Iis Afrianty Iis Afrianty Ikhsan, Tomi Ikhsanul Hamdi Indrizal, Habibi Putra Inggih Permana Irma Sanela Ismail Marzuki Ismar Puadi Isnan Mellian Ramadhan Israldi, Tino Iwan Iskandar Iwan Iskandar Iwan Iskandar Iwan Iskandar Iwan Iskandar Jasril Jasril Jasril Jasril Karina Julita Khair, Nada Tsawaabul Lestari Handayani Lestari Handayani Lili Rahmawati Liza Afriyanti Lola Oktavia Lola Oktavia M Fikry M. Afif Rizky A. Ma'rifah, Laila Alfi Masaugi, Fathan Fanrita Maulana Junihardi Mawadda Warohma Mazdavilaya, T Kaisyarendika Mhd. Kadarman Mori Hovipah Mori Hovipah Morina Lisa Pura Muhammad Affandes Muhammad Alvin Muhammad Fahri Muhammad Fikry Muhammad Hanif Abdurrohman Muhammad Ichsanul Bukhari Muhammad Irsyad Muhammad Syafriandi, Muhammad Muhammad Taufiq Muhammad Yusril Haffandi Muhammad Yusuf Fadhillah Mulyono, Makmur Muslimin, Al’hadiid Nabyl Alfahrez Ramadhan Amril Nailatul Fadhilah Nazir, Alwis Nazruddin Safaat H Negara, Benny Sukma Neni Sari Putri Juana Nesdi Evrilyan Rozanda Nining Nur Habibah Novriyanto Novriyanto Nurainun Nurainun Okfalisa Okfalisa Permata, Rizkiya Indah Pizaini Pizaini Puspa Melani Almahmuda Putra, Fiqhri Mulianda Putri Mardatillah Putri, Widya Maulida Rahmad Abdillah Rahmad Abdillah Rahmad Kurniawan Rahmadhani, R. Raja Sultan Firsky Ramadhan, Aweldri Ramadhan, Muhammad Ilham Ramadhani, Siti Reski Mai Candra Reski Mai Candra Reski Mai Candra Reski Mei Candra Riska Yuliana Roni Salambue Said Nanda Saputra Satria Bumartaduri Silfia Silfia Siti Ramadhani Siti Sri Rahayu Suswantia Andriani Suwanto Sanjaya Syaputra, Muhammad Dwiky Teddie Darmizal Vitriani, Yelvi Wulandari, Fitri Yaskur Bearly Fernandes Yusra, Yusra Yusril Hidayat Zabihullah, Fayat Zulastri, Zulastri