Claim Missing Document
Check
Articles

Found 3 Documents
Search
Journal : JOURNAL OF APPLIED INFORMATICS AND COMPUTING

Forecasting Air Quality Indeks Using Long Short Term Memory Ramadhani, Irfan Wahyu; Saputra, Filmada Ocky; Pramunendar, Ricardus Anggi; Saraswati, Galuh Wilujeng; Winarsih, Nurul Anisa Sri; Rohman, Muhammad Syaifur; Ratmana, Danny Oka; Shidik, Guruh Fajar
Journal of Applied Informatics and Computing Vol. 8 No. 1 (2024): July 2024
Publisher : Politeknik Negeri Batam

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30871/jaic.v8i1.7402

Abstract

Exercise offers significant physical and mental health benefits. However, undetected air pollution can have a negative impact on individual health, especially lung health when doing physical activity in crowded sports venues. This study addresses the need for accurate air quality predictions in such environments. Using the Long Short-Term Memory (LSTM) method or what is known as high performance time series prediction, this research focuses on forecasting the Air Quality Index (AQI) around crowded sports venues and its supporting parameters such as ozone gas, carbon dioxide, etc. -others as internal factors, without involving external factors causing the increase in AQI. Preprocessing of the data involves removing zero values "‹"‹and calculating correlations with AQI and the final step performs calculations with the LSTM model. The LSTM model which adds tuning parameters, namely with epoch 100, learning rate with a value of 0.001, and batch size with a value of 64, consistently shows a reduction in losses. The best results from the AQI, PM2.5, and PM10 features based on performance are MSE with the smallest value of 6.045, RMSE with the smallest value of 4.283, and MAE with a value of 2.757.
Optimization Chatbot Services Based on DNN-Bert for Mental Health of University Students Dzaky, Azmi Abiyyu; Zeniarja, Junta; Supriyanto, Catur; Shidik, Guruh Fajar; Paramita, Cinantya; Subhiyakto, Egia Rosi; Rakasiwi, Sindhu
Journal of Applied Informatics and Computing Vol. 8 No. 1 (2024): July 2024
Publisher : Politeknik Negeri Batam

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30871/jaic.v8i1.7403

Abstract

Attention to mental health is increasing in Indonesia, especially with the recent increase in the number of cases of stress and suicide among students. Therefore, this research aims to provide a solution to overcome mental health problems by introducing a chatbot system based on Deep Neural Networks (DNN) and BiDirectional Encoder Representation Transformers (BERT). The primary objective is to enhance accessibility and offer a more effective solution concerning the mental health of students. This chatbot utilizes Natural Language Processing (NLP) and Deep Learning to provide appropriate responses to mild mental health issues. The dataset, comprising objectives, tags, patterns, and responses, underwent processing using Indonesian language rules within NLP. Subsequently, the system was trained and tested using the DNN model for classification, integrated with the TokenSimilarity model to identify word similarities. Experimental results indicate that the DNN model yielded the best outcomes, with a training accuracy of 98.97%, validation accuracy of 71.74%, and testing accuracy of 71.73%. Integration with the TokenSimilarity model enhanced the responses provided by the chatbot. TokenSimilarity searches for input similarities from users within the knowledge generated from the training data. If the similarity is high, the input is then processed by the DNN model to provide the chatbot response. This integration of both models has proven to enhance the responsiveness of the chatbot in providing various responses even when the user inputs remain the same. The chatbot also demonstrates the capability to recognize various inputs more effectively with similar intentions or purposes. Additionally, the chatbot exhibits the ability to comprehend user inputs although there are many writing errors.
Comparative Study: Flower Classification using Deep Learning, SMOTE and Fine-Tuning Praskatama, Vincentius; Shidik, Guruh Fajar; Ningrum, Amanda Prawita
Journal of Applied Informatics and Computing Vol. 8 No. 2 (2024): December 2024
Publisher : Politeknik Negeri Batam

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30871/jaic.v8i2.8730

Abstract

Deep learning is a technology that can be used to classify flowers. In this research, flower type classification using the CNN method with several existing CNN architectures will be discussed. The data consists of 4317 images in .jpg format, covering 5 classes that is sunflower, dandelion, daisy, tulip and rose. The distribution of data for each class is daisy with 764 pictures, dandelion with 1052 pictures, rose with 784 pictures, sunflower with 733 pictures, and tulip with 984 pictures. With total dataset of 4317 pictures is further split to training data with ratio of 60%, validation with ratio of 10%, and testing with ratio of 30% to process with the CNN method and CNN framework. Due to the imbalance data distribution, the SMOTE method is applied to balancing number of samples in each class. This research compares CNN architectures, including CNN, GoogleNet, DenseNet, and MobileNet, where each transfer learning model undergoes fine-tuning to improve performance. At the classification stage, performance will be measured based on model testing accuracy. The accuracy obtained using CNN is 74.61%, using GoogleNet is 87.45%, DenseNet is 93.92%, and MobileNet is 88.34%.
Co-Authors Abdussalam Abdussalam, Abdussalam Affandy Affandy Aisyatul Karima Andrean, Muhammad Niko Andreas Wilson Setiawan Anggraini, Fitria Anhsori, Khusman Astuti, Yani Parti Azzahra, Tarissa Aura Budi Harjo Cahaya Jatmoko Catur Supriyanto Catur Supriyanto Catur Supriyanto Catur Supriyanto Chaerul Umam Chaerul Umam Christy Atika Sari Dewi Pergiwati Dliyauddin, Muhammad Doheir, Mohamed Dwi Eko Waluyo Dwi Puji Prabowo, Dwi Puji Dzaky, Azmi Abiyyu Edi Noersasongko Egia Rosi Subhiyakto, Egia Rosi Eko Hari Rachmawanto Elkaf Rahmawan Pramudya Erlin Dolphina Erna Zuni Astuti Fafaza, Safira Alya Fajrian Nur Adnan Fakhrurrozi Fakhrurrozi, Fakhrurrozi Firmansyah, Rusmal Harun Al Azies Hayu Wikan Kinasih Heru Lestiawan I Ketut Eddy Purnama Ika Pantiawati Islam, Hussain Md Mehedul Junta Zeniarja Kusuma, Edi Jaya Kusumawati, Yupie L. Budi Handoko Lenci Aryani Megantara, Rama Aria Mochamad Hariadi Muhammad Huda, Alam Muhammad Naufal, Muhammad Ningrum, Amanda Prawita Nurmandhani, Ririn Paramita, Cinantya Pergiwati, Dewi Praskatama, Vincentius Pujiono Pujiono Pulung Nurtantio Andono Purwanto Purwanto Putra, Permana Langgeng Wicaksono Ellwid Rafsanjani, Muhammad Ivan Rahadian, Arief Ramadhan Rakhmat Sani Ramadhani, Irfan Wahyu Rastri Prathivi Ratmana, Danny Oka Ricardus Anggi Pramunendar Riri Damayanti Apnena Rohman, Muhammad Syaifur Saputra, Filmada Ocky Saraswati, Galuh Wilujeng Sarker, Md. Kamruzzaman Savicevic, Anamarija Jurcev Shier Nee Saw Sinaga, Daurat Sindhu Rakasiwi Soeleman, M. Arief Sri Winarno Swanny Trikajanti Widyaatmadja Vincent Suhartono Wahyu Adi Nugroho Wellia Shinta Sari Winarsih, Nurul Anisa Sri Yaacob, Noorayisahbe Mohd Yani Parti Astuti Zainal Arifin Hasibuan Zami, Farrikh Al Zul Azri bin Muhamad Noh