Claim Missing Document
Check
Articles

KLASIFIKASI PENYAKIT KATARAK BERDASARKAN CITRA MENGGUNAKAN METODE CONVOLUTIONAL NEURAL NETWORK (CNN) BERBASIS WEB Diki Hananta Firdaus; Bahtiar Imran; Lalu Darmawan Bakti; Emi Suryadi
Jurnal Kecerdasan Buatan dan Teknologi Informasi Vol. 1 No. 3 (2022): Desember 2022
Publisher : Ninety Media Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.69916/jkbti.v1i3.6

Abstract

Mata adalah alat indera pada manusia yang berfungsi sebagai organ penglihatan. Gangguan penglihatan yang sangat memprihatinkan adalah masalah kebutaan. Mengacu pada data World Health Organization (WHO) tahun 2018, katarak menyumbang sekitar 48% kasus kebutaan di dunia dan nomor satu di Indonesia. Mata katarak dengan mata normal di masyarakat sekitar masih sulit untuk dibedakan, Sehingga masyarakat sering tidak menyadari ketika terindikasi penyakit katarak. Melihat dari uraian tersebut, penting sekali untuk mendeteksi penyakit katarak sebelum terjadi kebutaan. Dengan berkembangnya teknologi, pendeteksian dan klasifikasi katarak menjadi lebih mudah dengan adanya pengolahan citra digital. Pada penelitian ini penulis membuat suatu aplikasi Machine Learning untuk mengidentifikasi antara mata katarak dan mata normal dengan menggunakan metode Convolutional Neural Network (CNN) berbasis web. Dataset yang digunakan adalah 512 citra digital dengan pembaruan 2 kelas yaitu kelas katarak dan kelas normal. Dataset diambil dari sebuah website yang bergerak di bidang data sience yang bernama Kaggle. Pembelajaran mesin menggunakan Epoch 1, epoch 10 dan epoch 25. Pada epoch 1 mendapatkan hasil akurasi model sebesar 52,20%, epoch 10 mendapatkan akurasi sebesar 89,15% dan epoch 25 mendapatkan hasil akurasi sebesar 99,74%. Hasil terbaik yang didapatkan model adalah 99,74%. Hasil pengujian model menggunakan metode CNN ini dapat bekerja dengan sangat baik untuk memprediksi penyakit katarak pada mata.
KLASIFIKASI PENYAKIT EARLY BLIGHT DAN LATE BLIGHT PADA TANAMAN TOMAT BERDASARKAN CITRA DAUN MENGGUNAKAN METODE CNN BERBASIS WEBSITE Nining Putri Ningsih; Emi Suryadi; Lalu Darmawan Bakti; Bahtiar Imran
Jurnal Kecerdasan Buatan dan Teknologi Informasi Vol. 1 No. 3 (2022): Desember 2022
Publisher : Ninety Media Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.69916/jkbti.v1i3.10

Abstract

Tomat merupakan salah satu tanaman hortikultura di Indonesia yang sangat rentan terserang penyakit. Petani akan mengalami kesulitan untuk mengidentifikasi penyakit pada daun tanaman tomat, jika hanya dilihat secara kasat mata saja. Hal tersebut dapat menyebabkan kesalahan dalam penanggulangannya, sehingga dapat menyebabkan turunnya hasil produksi serta memungkinkan terjadinya gagal panen pada tanaman tomat. Oleh karena itu dibutuhkan aplikasi yang membantu petani untuk mengklasifikasi Penyakit Early Blight dan Late Blight pada daun tomat. Proses klasifikasi ini menggunakan citra daun dengan metode Convolutional Neural Network. Dataset yang digunakan 4.000 citra dengan 2 jenis penyakit yaitu Early Blight dan Late Blight. Penggunaan Algoritma CNN menghasilkan akurasi yang tinggi, proses training data menenggukan learning rate 0,0001 dan batch size 20. Epoch 1 menghasilkan loss 98%, akurasi 53%, Recall 46%. Epoch 10 menghasilkan 20, loss 34%, akurasi 85%, recall 81%. Epoch 20 menghasilkan loss 22%, akurasi 94%, recall 95%. Epoch 100 mengasilkan loss 5%, akurasi 99%, dan recall 85%, akan digunakan untuk proses klasifikasi karena menghasilkan akurasi dan recall yang tinggi, serta loss yang kecil. Model CNN tersebut akan di implementasikan ke website dengan menggunakan framework flask.
IDENTIFIKASI KEMIRIPAN FOTO ASLI DAN SKETSA MENGGUNAKAN MODEL GENERATIF ADVERSARIAL NETWORK (GANs) Satriawan, Andre; Imran, Bahtiar; Erniwati, Surni
Jurnal Kecerdasan Buatan dan Teknologi Informasi Vol. 2 No. 3 (2023): September 2023
Publisher : Ninety Media Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.69916/jkbti.v2i3.36

Abstract

Perkembangan seni semakin bertumbuh khususnya dalam bidang seni lukis, pertumbuhan tersebut terlihat dari banyaknya pemula yang mulai belajar melukis secara otodidak diawali dengan belajar membuat sketsa menggunakan metode yang beragam, tetapi masalah umum yang sering dihadapi oleh pemula dalam seni Lukis adalah seringkali sketsa dan foto asli terlihat serupa tetapi tidak tahu seberapa mirip sketsa yang telah dibuat. Penlitian ini bertujuan untuk mengidentifikasi persentase kemiripan foto asli dan sketsa menggunakan metode diskriminatif dari model Generative Adversarial Networks (GANs) memantkan library atau modul ssim. Diskriminator merupakan CNN yang menerima input gambar berukuran sama atau memiliki dimensi yang sama dan menghasilkan angka yang menyatakan apakah input merupakan gambar yang sama atau memeiliki kemiripan. Untuk mendapatkan persentase kemiripan yang tepat antara dua gambar memanfaatkan Struktural Similarity Index (SSIM) yang telah terlatih pada library scikit-image.
Design of Sustainable Smart Water Distribution Systems with Machine Learning-Based Leak Detection and Pressure Control to Conserve Water Resources Lalu Delsi Samsumar; Zaenudin Zaenudin; Supardianto Supardianto; Bahtiar Imran
Green Engineering: International Journal of Engineering and Applied Science Vol. 1 No. 4 (2024): October: Green Engineering: International Journal of Engineering and Applied Sc
Publisher : International Forum of Researchers and Lecturers

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.70062/greenengineering.v1i4.248

Abstract

The global clean water crisis is exacerbated by significant losses in water distribution networks (WDNs), resulting in inefficient use of both water and energy resources. Traditional methods of leak detection and pressure management often fail to address these inefficiencies, leading to substantial water wastage and high operational costs. This research aims to design a sustainable, smart water distribution system using advanced technologies such as Machine Learning (ML) for leak detection and automated pressure control. The system employs real-time monitoring through IoT sensors, which continuously gather data on water pressure, flow rates, and other critical parameters. This data is analyzed using various ML algorithms, including supervised and unsupervised learning models, to detect anomalies indicative of leaks. Additionally, the system integrates automated pressure control mechanisms that dynamically adjust pressure to prevent over-pressurization, reducing both water loss and energy consumption. By combining leak detection and pressure control, the proposed system offers a more efficient, sustainable solution to water resource management compared to traditional methods. The expected outcomes include a significant reduction in water loss, enhanced energy efficiency, and improved water service quality. However, the implementation of such a system in rural or small-town infrastructure faces challenges, including sensor maintenance, algorithm reliability, and regulatory issues. A cost-benefit analysis suggests that while the initial investment in smart technologies may be high, the long-term savings in water and energy costs outweigh these costs. This study underscores the potential of ML-based systems in enhancing water conservation, operational efficiency, and sustainability in water management.
Co-Authors AA Sudharmawan, AA Abba Suganda Girsang, Abba Suganda ahmad yani Ahmad Yani Akbar, Ardiyallah Akhmad Muzakka Amirudin Kalbuadi Anak Agung Istri Sri Wiadnyani Atika Zahra Nirmala Baihaki, Makmun Baiq Nonik Ria Riska Baiq Nonik Ria Riska Diki Hananta Firdaus Efendi, Muhamad Masjun Erfan Wahyudi erniwati, surni Fachrul Kurniawan Febri, Elin Febriani Giardi, Muh Hamzah Andung Hambali Hambali Hambali Hambali Hambali, H Hamim, Lutfi Hasan Basri Hendri Ramdan Hidayatullah, Beni Ari Karim, Muh Nasirudin Karina Nurwijayanti Karya Gunawan Karya Gunawan Lalu Darmawan Bakti, Lalu Darmawan Lalu Delsi Samsumar, M.Eng. M Zulpahmi M. Zulpahmi M. Zulpahmi Mahayadi, Mahayadi Makmun Baihaki Marroh, Zahrotul Isti’anah Moch Arief Soeleman Moh. Arief Soeleman Muahidin, Zumratul Muh. Akshar Muhammad Rijal Alfian Muhammad Zohri Mutaqin, Zaenul Muttaqin, Athaur Muzakka, Akhmad Ndang, Rijalul Mujahidin Nining Putri Ningsih Nunung Rahmania Nurkholis, Lalu Moh. Pratama, Rifqy Hamdani Purnamasidi, Hanis Purwanto Purwanto Ricardus Anggi Pramunendar Riska, Baiq Nonik Ria Rosida, Sri Rudi Muslim Rudi Muslim Salman Salman Salman Salman Salman Saputra, Dede Haris Satriawan, Andre Selamet Riadi Selamet Riadi Sriasih, Sriasih Subektiningsih Subektiningsih Subki, Ahmad Suharjito Suharjito, Suharjito Suhartono Supardianto Supardianto Suryadi, Emi Tahrir, Muhammad Zaeniah Zaeniah Zaeniah Zaeniah Zaenudin Zaenudin Zaenudin Zaenudin Zaenudin Zaenudin Zaenudin Zaenudin Zaenudin Zahroni, Teguh Rizali Zenuddin, Z Zulpahmi, M Zulpahmi, M. Zulpan Hadi