Claim Missing Document
Check
Articles

Found 29 Documents
Search

Master Stockist Customer Segmentation Using RFM Model and Self-Organizing Maps Algorithm Nirwana, Ni Kadek Ayu; Dewi, Ni Putu Wahyuni; Asana, I Made Dwi Putra; Dewi, Ni Wayan Jeri Kusuma; Astari, Gusti Ayu Shinta Dwi
Sinkron : jurnal dan penelitian teknik informatika Vol. 8 No. 4 (2024): Article Research Volume 8 Issue 4, October 2024
Publisher : Politeknik Ganesha Medan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33395/sinkron.v8i4.14112

Abstract

Master Stockist PT SNS 21 Bali struggles to identify member performance based on purchasing behavior because the applicable system only records transactions and stock of goods without providing insight into customers. Customer segmentation can be carried out to identify and understand differences in customer purchasing behavior. Therefore, this study aims to determine customer segmentation using the RFM (Recency, Frequency, Monetary) model and the Self-Organizing Maps (SOM) algorithm. Segmentation development uses the CRISP-DM (Cross-Industry Standard Process for Data Mining) approach. The RFM model numerically represents customer behavior through three variables, while the Self-Organizing Maps algorithm groups customers into segments with similar characteristics. In this research, the best SOM parameters are 750 iterations, learning rate 0.5, radius 0.5, and grid size 1x3, resulting in 3 clusters with a Silhouette Score of 0.647608 and a Davies-Bouldin Index of 0.536503. Cluster 1 consists of 226 new customers with low RFM values who need encouragement to be more active. Cluster 2, comprising seven members, has low recency, high frequency, and high monetary values, representing loyal customers who need to be retained. Cluster 3 consists of 239 inactive customers with high recency, low frequency, and low monetary values, requiring a reactivation strategy.
Perancangan Sistem Informasi Untuk Mendukung Pengelolaan Data Penjualan pada Toko BUMDes Atmaja, Ketut Jaya; Nirwana, Ni Kade Ayu; Nugraha, Putu Gede Surya Cipta; Asana, I Made Dwi Putra; Sandhiyasa, I Made Subrata; Indrawan, I Putu Yoga
Jurnal KOMET Vol 1 No 3 (2025): Jurnal Komet: Kolaborasi Masyarakat Berbasis Teknologi : INPRESS Volume 1 Nomor 3
Publisher : Yayasan Sinergi Widya Nusantara

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.70103/komet.v1i3.52

Abstract

BUMDes Guna Artha menghadapi sejumlah permasalahan utama yang memerlukan penanganan yang baik. Salah satu tantangan utamanya adalah ketidakpastian ketersediaan barang di toko. Sistem pencatatan stok yang hanya mengandalkan lembar MS Excel seringkali tidak dapat mencerminkan situasi aktual di toko fisik. Dampak dari situasi ini melibatkan ketidakpuasan pelanggan dan potensi merugikan citra toko BUMDes Guna Artha. Informasi adalah sekumpulan data atau fakta yang diorganisasi atau diolah dengan cara tertentu sehingga mempunyai arti bagi penerima. Ketersediaan informasi yang baik dapat membantu pihak manajemen toko BUMDes dalam pengambilan keputusan untuk terus meningkatkan kinerja toko. Solusi dari permasalahan yang dihadapi mitra adalah dengan melakukan kegiatan Pengabdian Kepada Masyarakat (PKM) berupa pembuatan dan pelatihan penggunaan sistem informasi. Fitur-fitur dari sistem informasi yang dibangun mencakup sistem transaksi penjualan, kemampuan untuk melihat status pesanan dan pembayaran secara real-time, serta penyediaan laporan penjualan dan grafik penjualan per barang. Dengan semua fitur ini, melalui sistem informasi penjualan yang dibangun dapat memfasilitasi transaksi, pelacakan pesanan, pembayaran, stock opname, dan penyediaan laporan penjualan secara lebih efektif. Kegiatan PKM dibagi menjadi pembuatan sistem informasi dan pelatihan penggunaan sistem informasi. Pada sistem informasi yang dibuat dapat digunakan untuk mencatat transaksi penjualan yang telah dilakukan, dan juga dapat memberikan informasi penjualan dan informasi stok barang di toko BumDes.
Improved SVM Classification Using Particle Swarm Optimization for Student Completion Prediction System Asana, I Made Dwi Putra; Oka, I Dewa Gede Ari; Widyantara, I Made Oka; Sandhiyasa, I Made Subrata
JUITA: Jurnal Informatika JUITA Vol. 12 No. 2, November 2024
Publisher : Department of Informatics Engineering, Universitas Muhammadiyah Purwokerto

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30595/juita.v12i2.21990

Abstract

Timely completion of a study program is crucial for evaluating the quality of universities. To achieve timely completion, student’s progress needs to be monitored early in order to ensure that they can complete the given task on time. This process is particularly important because universities often enroll thousands of students, thereby making individual supervision impractical. An effective solution to this problem is leveraging machine learning to develop a system that predicts whether student will complete the study without delay. Therefore, this study used Support Vector Machine (SVM) method for classification, with RBF kernel. Optimization of SVM classification was achieved by ensuring the values for Soft Margin C parameter and kernel parameter were correct. In addition, Particle Swarm Optimization (PSO) method was used to determine the optimal SVM parameter values. Consequently, the resulting model was evaluated using Cross Fold Validation. The optimized SVM parameter identified through PSO were gamma of 0.0085 and C of 0.4196. The average training accuracy recorded is 82.58%, with 81.22% validation, these results can be categorized into Good Classification. Finally, the application of PSO in optimization resulted in SVM models that avoided overfitting, as shown by the closeness of training and validation values.
Performance Comparison of MobileNet and EfficientNet Architectures in Automatic Classification of Bacterial Colonies Wahyudi, I Putu Alfin Teguh; Sudipa, I Gede Iwan; Libraeni, Luh Gede Bevi; Radhitya, Made Leo; Asana, I Made Dwi Putra
Indonesian Journal of Data and Science Vol. 6 No. 2 (2025): Indonesian Journal of Data and Science
Publisher : yocto brain

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.56705/ijodas.v6i2.218

Abstract

Bacterial colony classification is crucial in microbiology but remains labor-intensive and time-consuming when performed manually. Deep learning, particularly Convolutional Neural Networks (CNNs), enables automated classification, improving accuracy and efficiency. This study compares MobileNetV2 and EfficientNet-B0 for bacterial colony classification, evaluating the impact of data augmentation on model performance. Using the Neurosys AGAR dataset, preprocessing techniques such as histogram equalization, gamma correction, and Gaussian blur were applied, while data augmentation (rotation, noise addition, luminosity adjustments) improved model generalization. The dataset was split (80% training, 20% testing), and models were trained with learning rates (0.0001, 0.001) and epochs (100, 150, 200). Results show EfficientNet-B0 outperforms MobileNetV2, achieving higher validation accuracy and stability, with optimal performance at 150–200 epochs and a lower learning rate (0.0001). Data augmentation significantly improved accuracy and reduced overfitting. While MobileNetV2 remains a lightweight alternative, its performance is heavily reliant on augmentation. These findings highlight EfficientNet-B0 as the superior model, supporting the automation of microbiological diagnostics. Future research should explore hybrid CNN architectures, Vision Transformers (ViTs), and real-time implementation for improved classification efficiency.
Pengembangan Website Profil Dusun untuk Mendukung Pembangunan Desa yang Informatif dan Terintegrasi Radhitya, Made Leo; Atmaja, Ketut Jaya; Wijaya, Bagus Kusuma; Asana, I Made Dwi Putra; Sudipa, I Gede Iwan; Gunawan, I Komang Agus Bryan
Jurnal KOMET Vol 2 No 1 (2025): Jurnal Komet: Kolaborasi Masyarakat Berbasis Teknologi : Volume 2 Nomor 1, Juni 2
Publisher : Yayasan Sinergi Widya Nusantara

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.70103/komet.v2i1.63

Abstract

Keterbatasan akses terhadap informasi dan minimnya transparansi dalam penyampaian kegiatan sosial serta struktur organisasi di tingkat komunitas masih menjadi tantangan bagi banyak lingkungan masyarakat. Salah satu solusi yang dapat diterapkan untuk mengatasi masalah tersebut adalah melalui pengembangan website profil komunitas berbasis Content Management System (CMS) yang mudah diakses dan dikelola. Kegiatan pengabdian ini bertujuan untuk meningkatkan transparansi, memperkuat partisipasi masyarakat, dan mendigitalisasi pengelolaan informasi komunitas melalui pembuatan dan pemanfaatan website. Metode pelaksanaan dilakukan melalui pendekatan Transfer Knowledge, Technology Transfer, dan Difusi IPTEKS, yang meliputi pelatihan kepada pengurus dan masyarakat, pembuatan konten, dan pendampingan teknis. Website dirancang dengan fitur-fitur utama seperti informasi profil, dokumentasi kegiatan, pengumuman penting, layanan pengurus, dan fasilitas kontak masyarakat. Hasil kegiatan menunjukkan bahwa keberadaan website mampu meningkatkan efisiensi komunikasi, memperluas jangkauan informasi, serta membangun budaya digital yang partisipatif di kalangan warga. Sosialisasi dan pengenalan website mendapat antusiasme tinggi dari masyarakat, dengan banyaknya masukan yang konstruktif mengenai kebutuhan informasi yang relevan. Dengan demikian, platform digital ini menjadi sarana strategis untuk mendukung tata kelola komunitas yang lebih transparan, informatif, dan adaptif terhadap perkembangan teknologi.
Real-Time Web-Based Ship Collision Risk Detection Using AIS Data and Collision Risk Index (CRI) Asana, I Made Dwi Putra; Widyantara, I Made Oka; Linawati, Linawati; Wiharta, Dewa Made; Wikananda, I Gusti Ngurah Satya
Sinkron : jurnal dan penelitian teknik informatika Vol. 9 No. 4 (2025): Articles Research October 2025
Publisher : Politeknik Ganesha Medan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33395/sinkron.v9i4.15106

Abstract

The high density of maritime traffic in Indonesian waters, particularly in the Lombok Strait and Nusa Penida region, increases the risk of ship collisions, especially among vessels lacking adequate navigation systems. This study presents the development of a web-based system for real-time ship monitoring and collision risk assessment using Automatic Identification System (AIS) data. The system integrates a backend powered by FastAPI and MongoDB with a frontend built using React JS. AIS data is collected from a base station and processed to detect ship encounters using the DBSCAN clustering algorithm combined with Haversine distance to identify encounter detection. The risk assessment applies the Collision Risk Index (CRI) method by calculating DCPA (Distance to Closest Point of Approach) and TCPA (Time to Closest Point of Approach), allowing for graded risk categorization. Real-time risk notifications are delivered via WebSocket, and the interface includes interactive maps, ship detail views, and maritime weather information from the BMKG API. The system achieved high responsiveness, with an average detection time of 0.0075 seconds per ship and an end-to-end response time of approximately 61 milliseconds. Functional and usability tests show that the system effectively supports early detection of collision risks and improves maritime situational awareness. The proposed solution is scalable and applicable for maritime safety monitoring in busy sea routes, contributing to safer navigation and proactive decision-making.
Comparison of Automation Testing On Card Printer Project Using Playwright And Selenium Tools Melyawati, Ni Luh Putu; Asana, I Made Dwi Putra; Putri, Ni Wayan Suardiati; Atmaja, Ketut Jaya; Sudipa, I Gede Iwan
Journal of Computer Networks, Architecture and High Performance Computing Vol. 6 No. 3 (2024): Articles Research Volume 6 Issue 3, July 2024
Publisher : Information Technology and Science (ITScience)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47709/cnahpc.v6i3.4362

Abstract

The quality of the software is greatly determined by the testing phase, which involves various test cases that can be conducted through manual testing and automation testing. Manual testing is performed manually without using automation scripts, whereas automation testing is conducted using automation scripts. ABC is a company that operates globally in the field of access control, with the Card Printer being one of the menus used in access control. In the development process of this software, both manual and automation testing phases are carried out. The automation testing process employs the Selenium tool, which has proven to be time-consuming and poses challenges when running numerous test cases. This research aims to develop automation testing using Playwright to address the long execution time issue encountered with Selenium. The research utilizes the Card Printer project in the development of automation testing and adopts the Agile methodology. The result of developing automation testing using Playwright was successfully applied to 12 test cases. Additionally, the time analysis between Playwright and Selenium showed that Playwright has a total execution time of 4.9 minutes, which is faster compared to Selenium's total execution time of 8.3 minutes. With faster execution times, Playwright can be considered a tool in the development of automation testing.
Naïve Bayes-based Student Graduation Prediction Model: Effectiveness and Implementation to Improve Timely Graduation Atmaja, Ketut Jaya; Indrawan, I Putu Yoga; Asana, I Made Dwi Putra; Wawan, I Kadek; Udayanie, Ayu Gde Chrisna
Journal of Computer Networks, Architecture and High Performance Computing Vol. 6 No. 3 (2024): Articles Research Volume 6 Issue 3, July 2024
Publisher : Information Technology and Science (ITScience)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47709/cnahpc.v6i3.4408

Abstract

Studies in an educational institution, when the lack of timely graduation of students in each batch and the number of students in each batch, causes an imbalance between incoming students and outgoing students and causes a decrease in accreditation from the campus, this should not continue to happen, the solution to dealing with this problem as an early detection of students who graduate on time is to predict the length of the student study period they have. Therefore, researchers will discuss the design of a prediction system for graduating on time using the Naïve Bayes method, to predict student graduation so that there is no imbalance of incoming and outgoing students. The construction of this system also uses the Naïve Bayes method and the CRISP-DM (Cross Industry Standard Process Data Mining) development method. In this case study, the Naïve Bayes method predicts data into 2, namely 1 (graduated on time) and 0 (did not graduate on time) by labeling the data used. In this model using 3247 data with the selection of features, namely semester achievement index 1 (ips1), ips2, ips3, ips4, ips5, semester credit units1 (credits1), credits2, credits3, credits4, credits5, semester credit units not passed 1 (skstidaklulus1), skstidaklulus2, skstidaklulus3, skstidaklulus4, skstidaklulus5 and labels. Using these feature variables results in model performance with 80% accuracy, with 80% accuracy it can be said that the model works well.
Pelatihan dan Pendampingan Media Sosial dalam Mendukung Promosi dan Penjualan Produk UMKM Ukiran Kayu Wiguna, I Komang Arya Ganda; Semadi, Ketut Ngurah; Asana, I Made Dwi Putra; Putra, Putu Satria Udyana; Radhitya, Made Leo
Jurnal KOMET Vol 1 No 1 (2024): Jurnal Komet: Kolaborasi Masyarakat Berbasis Teknologi : Volume 1 Nomor 1, Juni 2
Publisher : Yayasan Sinergi Widya Nusantara

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.70103/komet.v1i1.8

Abstract

Promosi dan Penjualan digital menjadi suatu proses bisnis yang harus dapat diterapkan pada setiap usaha, tidak terkecuali pada Usaha Mikro, Kecil, dan Menengah (UMKM). Perkembangan UMKM saat ini telah mengantarkan pada UMKM Goes Digital, sehingga adopsi teknologi dan pemanfaatan media promosi dan penjualan digital menjadi kebutuhan. Namun pada realitanya tentunya pemerataan dari pemanfaatan promosi dan penjualan digital disesuaikan dengan kemampuan dari setiap pemilik UMKM. Contohnya pada UMKM Kasari Ukir, Gianyar, bali yang memiliki permasalahan utama yang dihadapi dalam upaya mereka untuk bisa aktif di media sosial untuk menjalankan strategi promosi. Permasalah dalam pemasaran digital yang dialami pada usaha kasari ukir ini adalah belum mampu memanfaatkan sosial media untuk melakukan promosi serta pemasaran produk ukiran pada usaha kasari ukir.  Sehingga pada kegiatan Pengabdian Kepada Masyarakat (PKM) ini memfokuskan pada tranfer knowledge terkait pemanfaatan media sosial bagi pengelola UMKM dalam mendukung promosi dan penjualan.  Hasil kegiatan pelatihan dan pendampingan berupa pendampingan pembuatan konten Instagram, foto produk UMKM dalam mengasah keterampilan dalam bidang sosial media berupa Instagram, selain melatih cara copywriting dan teknik foto produk kegiatan ini diharapkan dapat mengasah keterampilan soft skill dan hard skill dalam usaha kasari ukir dalam bentuk pengaplikasian di era digital.