cover
Contact Name
Mustakim
Contact Email
officialmalcom.irpi@gmail.com
Phone
+6285275359942
Journal Mail Official
malcom@irpi.or.id
Editorial Address
INSTITUT RISET DAN PUBLIKASI INDONESIA Jl. Tuah Karya Ujung C7. Kel. Tuah Madani Kec. Tampan Kota Pekanbaru - Riau
Location
Kota pekanbaru,
Riau
INDONESIA
Malcom: Indonesian Journal of Machine Learning and Computer Science
ISSN : 27972313     EISSN : 27758575     DOI : -
Core Subject : Science,
MALCOM: Indonesian Journal of Machine Learning and Computer Science is a scientific journal published by the Institut Riset dan Publikasi Indonesia (IRPI) in collaboration with several Universities throughout Riau and Indonesia. MALCOM will be published 2 (two) times a year, April and October, each edition containing 10 (Ten) articles. Articles may be written in Indonesian or English. articles are original research results with a maximum plagiarism of 15%. Articles submitted to MALCOM will be reviewed by at least 2 (two) reviewers. The submitted article must meet the assessment criteria and in accordance with the instructions and templates provided by MALCOM. The author should upload the Statement of Intellectual/ Copyright Rights when submitting the manuscript. Papers must be submitted via the Open Journal System (OJS) in .doc or .docx format. The entire process until MALCOM is published will be free of charge. MALCOM is registered in National Library with Number International Standard Serial Number (ISSN) Printed: 2797-2313 and Online 2775-8575. Focus and scope of MALCOM includes Data Mining, Data Science, Artificial Intelligence, Computational Intelligence, Natural Language Processing, Big Data Analytic, Computer Vision, Expert System, Text and Web Mining, Parallel Processing, Intelligence System, Decision Support System and Software Engineering
Articles 418 Documents
Internet of Things Based Air Quality Monitoring System with Automatic Notification Azizah, Devi Nur; Heranurweni, Sri; Idris, La Ode Muhamad
MALCOM: Indonesian Journal of Machine Learning and Computer Science Vol. 5 No. 3 (2025): MALCOM July 2025
Publisher : Institut Riset dan Publikasi Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.57152/malcom.v5i3.1945

Abstract

Internet of Things (IoT)-based air quality monitoring systems represent a significant advancement in urban environmental management. This research implements a system that integrates PM2.5, PM10, CO2, and NO2 sensors for real-time monitoring of pollutants. The results showed that the integration of IoT technology with cloud computing and machine learning algorithms successfully created a responsive and accurate monitoring system. The model achieved maximum accuracy during the training process, with promising predictive capabilities in real-world implementation. The main findings of the study confirmed that the Weighted Class (WC) approach significantly improved performance in the testing and prediction process by addressing class imbalance in the dataset, while the Data Augmentation (DA) technique did not show the expected improvement due to the intrinsic characteristics of air quality data. The automatic notification system successfully provides early warnings when air quality exceeds specified thresholds, enabling proactive responses from authorities and the public. The implementation of a web-based monitoring dashboard provides comprehensive visualization of data for long-term analysis. This research contributes to the development of smart cities by providing an effective framework for air quality management, supporting data-driven decision-making, and increasing public awareness of environmental conditions.
Perbandingan Kinerja Algoritma Clustering K-Means dan K-Medoids dalam Pengelompokan Sekolah di Provinsi Riau Berdasarkan Ketersediaan Sarana dan Prasarana: Comparison of K-Means and K-Medoids Clustering Algorithm Performance in Grouping Schools in Riau Province Based on Availability of Facilities and Infrastructure Salman, Muhammad Dzaki; Rahmaddeni, Rahmaddeni; Pratama , Nanda Rizki; A, M. Nakhlah Farid; Setiawan, Ahmad Agung; Zalianti, Fenisya; Huda, Isra Bil
MALCOM: Indonesian Journal of Machine Learning and Computer Science Vol. 5 No. 3 (2025): MALCOM July 2025
Publisher : Institut Riset dan Publikasi Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.57152/malcom.v5i3.1950

Abstract

Pendidikan yang berkualitas sangat dipengaruhi oleh ketersediaan sarana dan prasarana yang memadai. Penelitian ini bertujuan untuk membandingkan kinerja dua algoritma clustering, yaitu K-Means dan K-Medoids, dalam mengelompokkan 497 sekolah negeri di Provinsi Riau yang terdiri dari jenjang SD, SMP, SMA, dan SMK. Data yang dianalisis meliputi jumlah guru, siswa, ruang kelas, laboratorium, akses internet, sanitasi, dan status akreditasi. Data diperoleh dari Dinas Pendidikan dan Badan Pusat Statistik (BPS) Provinsi Riau, kemudian dianalisis melalui Exploratory Data Analysis (EDA), preprocessing, dan reduksi dimensi dengan Principal Component Analysis (PCA). Hasil evaluasi menggunakan Davies-Bouldin Index (DBI) dengan k=3 menunjukkan bahwa K-Medoids menghasilkan cluster yang lebih terpisah dan lebih baik (0,61) dibandingkan K-Means (0,80). Keunggulan K-Medoids terletak pada ketahanannya terhadap outlier dan distribusi data yang tidak merata. Hasil penelitian ini dapat digunakan sebagai acuan dalam perencanaan kebijakan pendidikan yang lebih merata dan tepat sasaran di Provinsi Riau.
Perbandingan Performansi Algoritma Multiple Linear Regression dan Multi Layer Perceptron Neural Network dalam Memprediksi Penjualan Obat: Comparison of the Performance of Multiple Linear Regression Algorithms and Multi Layer Perceptron Neural Networks in Predicting Drug Sales Arifuddin, Danang; Kusrini, Kusrini; Kusnawi, Kusnawi
MALCOM: Indonesian Journal of Machine Learning and Computer Science Vol. 5 No. 2 (2025): MALCOM April 2025
Publisher : Institut Riset dan Publikasi Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.57152/malcom.v5i2.1952

Abstract

Penelitian ini mengevaluasi pemilihan atribut dari variabel internal (jumlah penjualan) dan eksternal (cuaca, harga komoditas, inflasi) menggunakan metode korelasi, serta membandingkan performansi algoritma Multiple Linear Regression (MLR) dan Multi-Layer Perceptron Neural Network dengan backpropagation (MLPNN-b) dalam memprediksi penjualan obat analgesik di “Apotek XYZ”. Metrik evaluasi Mean Squared Error (MSE) dan Mean Absolute Percentage Error (MAPE) digunakan untuk mengukur akurasi prediksi. Hasil menunjukkan bahwa atribut internal "h-7" memiliki korelasi tertinggi (0,35) terhadap penjualan harian, sementara variabel eksternal seperti suhu harian, harga bawang merah, dan suku bunga juga memberikan kontribusi. Algoritma MLPNN-b dengan parameter tertentu mencapai MAPE 22,3% dan MSE 19.588 pada atribut tunggal, sedangkan MLR memiliki kinerja lebih merata pada atribut kombinasi dengan MAPE 25,6% dan MSE 22.768. Namun, kedua model masih mengalami underfitting dengan tingkat kesalahan prediksi yang cukup tinggi. Penelitian ini menyimpulkan bahwa meskipun MLPNN lebih unggul dalam menangkap hubungan non-linear dibandingkan MLR, akurasi prediksi masih belum optimal. Oleh karena itu, eksplorasi model hybrid serta integrasi lebih banyak variabel eksternal direkomendasikan untuk meningkatkan prediksi penjualan dan mendukung sistem manajemen stok farmasi yang lebih akurat.
Implementasi Design Thinking pada UI/UX Game Edukasi 2D Hafalan Haditst Menggunakan System Usability Scale (SUS) dan User Experience Questionnaire (UEQ): Implementation of Design Thinking on UI/UX of 2D Educational Game of Haditst Memorization Using System Usability Scale (SUS) and User Experience Questionnaire (UEQ) Hasanah, Firda Uswatun; Satrio, Rizky Wahyu; Hanafri, Muhammad Iqbal; Maisaroh, Siti
MALCOM: Indonesian Journal of Machine Learning and Computer Science Vol. 5 No. 2 (2025): MALCOM April 2025
Publisher : Institut Riset dan Publikasi Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.57152/malcom.v5i2.1969

Abstract

Perkembangan teknologi membawa perubahan besar di berbagai sektor, termasuk pendidikan. Transformasi ini meningkatkan keterlibatan siswa dalam belajar serta memungkinkan desain kelas yang lebih interaktif. Salah satu inovasi yang memanfaatkan teknologi adalah game edukasi. Penelitian ini mengembangkan game edukasi 2D untuk membantu meningkatkan hafalan hadits dengan pendekatan design thought. Proses pengembangan melalui lima tahapan utama: memahami kebutuhan pengguna (empati), merancang masalah, mengembangkan ide, membuat prototype, dan melakukan pengujian. Pengujian prototype dilakukan dengan metode System Usability Scale (SUS) dan User Experience Questionnaire (UEQ). Skor rata-rata SUS yang diperoleh dari pengujian adalah 76, yang artinya tingkat kegunaan prototype berada pada kategori sangat baik. Hasil UEQ menunjukkan nilai Excellent pada aspek Daya Tarik, Kejelasan, Ketepatan, Stimulasi, dan Kebaruan, serta Baik pada aspek Efisiensi. Temuan ini menegaskan bahwa pendekatan design thought efektif dalam menciptakan UI/UX yang inovatif, menarik, dan mudah digunakan. Oleh karena itu, desain game ini berkontribusi pada inovasi pembelajaran berbasis teknologi, khususnya dalam pendidikan agama, dengan membantu proses hafalan hadits secara lebih menyenangkan dan efektif.
Perbandingan Algoritma K-Nearest Neighbors dan Random Forest untuk Rekomendasi Gaya Hidup Sehat dalam Mencegah Penyakit Jantung: Comparison of K-Nearest Neighbors and Random Forest Algorithms for Recommendations for a Healthy Lifestyle in Prevent Heart Disease Sahelvi, Elza; Cikita, Putri; Sapitri, Riska Mela; Rahmaddeni, Rahmaddeni; Efrizoni, Lusiana
MALCOM: Indonesian Journal of Machine Learning and Computer Science Vol. 5 No. 3 (2025): MALCOM July 2025
Publisher : Institut Riset dan Publikasi Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.57152/malcom.v5i3.1972

Abstract

Penyakit jantung merupakan salah satu penyebab utama kematian yang disebabkan oleh faktor gaya hidup tidak sehat. Untuk mengatasi permasalahan ini, penelitian ini membandingkan algoritma K-Nearest Neighbors (KNN) dan Random Forest (RF) dalam memberikan rekomendasi gaya hidup sehat guna mencegah penyakit jantung. Dataset yang digunakan terdiri dari 1.025 entri dengan 14 fitur, yang telah melalui tahap preprocessing, termasuk normalisasi, seleksi fitur, dan pembagian data 80:20 serta 70:30. Evaluasi model dilakukan menggunakan metrik akurasi, presisi, recall, dan F1-score. Hasil penelitian menunjukkan bahwa Random Forest memiliki akurasi lebih tinggi (99% pada skenario 80:20 dan 98% pada skenario 70:30) dibandingkan KNN (83% dan 86%), serta lebih stabil dalam mengklasifikasikan risiko penyakit jantung. Analisis fitur menunjukkan bahwa Chest Pain Type (CP) atau nyeri dada merupakan faktor paling berpengaruh. Berdasarkan hasil ini, direkomendasikan pola makan sehat, aktivitas fisik teratur, manajemen stres, serta pemeriksaan kesehatan rutin. Kesimpulannya, Random Forest lebih efektif dalam sistem rekomendasi gaya hidup sehat, dan penelitian selanjutnya dapat menggunakan dataset lebih besar dengan variabel tambahan guna meningkatkan akurasi prediksi.
Model Prediksi Dampak Perubahan Iklim pada Ketahanan Pangan Menggunakan Algoritma Support Vector Machine and K-Nearest Neighbors: Prediction Model for the Impact of Climate Change on Food Security Using the Support Vector Machine and K-Nearest Neighbors Algorithms Sari, Devi Puspita; Risman, Risman; Maulana, Fitra; Efrizoni, Lusiana; Rahmaddeni, Rahmaddeni
MALCOM: Indonesian Journal of Machine Learning and Computer Science Vol. 5 No. 3 (2025): MALCOM July 2025
Publisher : Institut Riset dan Publikasi Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.57152/malcom.v5i3.1975

Abstract

Perubahan iklim memberikan dampak signifikan terhadap ketahanan pangan global, terutama di wilayah yang sangat bergantung pada sektor agrikultur. Fenomena seperti curah hujan ekstrem, kenaikan suhu, dan perubahan pola angin telah memengaruhi produktivitas pertanian secara signifikan. Urgensi penelitian ini terletak pada pentingnya pengembangan model prediktif berbasis data untuk mengantisipasi dampak perubahan iklim terhadap ketahanan pangan, sehingga strategi adaptasi dapat dirancang secara tepat oleh pembuat kebijakan. Penelitian ini bertujuan mengembangkan model prediksi dampak perubahan iklim terhadap ketahanan pangan dengan memanfaatkan algoritma Support Vector Machine (SVM) dan K-Nearest Neighbors (KNN). Dataset yang digunakan meliputi data meteorologi harian, seperti curah hujan (precipitation), suhu maksimum (temp_max), suhu minimum (temp_min), dan kecepatan angin (wind), yang diperoleh dari Kaggle (Seattle weather). Model SVM diterapkan untuk menangkap hubungan non-linear antara parameter iklim dengan indikator ketahanan pangan, sedangkan KNN digunakan untuk menganalisis pola serupa pada data historis. Hasil penelitian menunjukkan bahwa SVM memiliki akurasi prediksi sebesar 78%, lebih unggul dibandingkan KNN yang mencapai akurasi 74%. Temuan ini membuktikan bahwa SVM lebih efektif dalam memodelkan keterkaitan antara variabel iklim dan ketahanan pangan. Dengan demikian, penelitian ini berhasil mencapai tujuannya dan memberikan kontribusi penting dalam pengembangan sistem prediksi berbasis machine learning untuk mendukung kebijakan pangan yang adaptif terhadap perubahan iklim.
Optimization of Customer Segmentation in the Retail Industry Using the K-Medoid Algorithm Agustin, Endy Wulan; Uthami, Kurnia; Ulfa, Arvan Izzatul; Efrizoni, Lusiana; Rahmaddeni, Rahmaddeni
MALCOM: Indonesian Journal of Machine Learning and Computer Science Vol. 5 No. 3 (2025): MALCOM July 2025
Publisher : Institut Riset dan Publikasi Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.57152/malcom.v5i3.1977

Abstract

The retail industry faces significant challenges in understanding increasingly complex customer behavior due to massive data growth. One major obstacle is suboptimal customer segmentation, leading to ineffective marketing strategies. This study aims to optimize customer segmentation by implementing the K-Medoid algorithm, which excels in handling outliers and producing more stable clusters compared to K-Means. The dataset consists of over 10,000 customer transactions from a major retail company in Indonesia. The research process includes data collection and preprocessing, K-Medoid algorithm implementation, and performance evaluation using the silhouette score. The results indicate that the K-Medoid algorithm achieves more accurate customer segmentation, with a silhouette score of 0.39. The generated clusters exhibit greater homogeneity, enabling companies to design more targeted marketing strategies, such as specific discount offers and tailored loyalty programs. Based on these findings, the K-Medoid algorithm is recommended to enhance customer management effectiveness in the retail industry. This study contributes to selecting a more suitable algorithm for customer segmentation in the era of big data and opens opportunities for further exploration of hybrid algorithms and additional evaluation metrics.
Analisis Faktor-Faktor yang Mempengaruhi Engagement Video di Platform TikTok Menggunakan Multiple Linear Regression: Analysis of Factors that Influence Video Engagement on the TikTok Platform Using the Multiple Linear Regression Algorithm Sapina, Nur; Nanda, Annisa; Arifin, Muhammad Amirul; Rahmaddeni, Rahmaddeni; Efrizoni, Lusiana
MALCOM: Indonesian Journal of Machine Learning and Computer Science Vol. 5 No. 3 (2025): MALCOM July 2025
Publisher : Institut Riset dan Publikasi Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.57152/malcom.v5i3.1987

Abstract

TikTok telah berkembang menjadi salah satu platform interaksi digital terkenal secara luas di seluruh dunia, yang memiliki lebih dari satu miliar orang pengguna aktif. Namun, sebagian video di TikTok memperoleh tingkat engagement yang tinggi meskipun menggunakan pendekatan konten yang serupa. Riset ini dimaksudkan untuk menelusuri unsur-unsur yang memberikan pengaruh terhadap engagement video di TikTok dengan menerapkan algoritma Regresi Linear Berganda. Variabel yang dianalisis meliputi durasi video, jumlah tayangan, komentar, like, share, dan download. Setelah melalui tahap preprocessing data, seleksi fitur, dan pengujian asumsi regresi, ditemukan bahwa video_like_count, video_share_count, dan video_download_count memiliki pengaruh paling signifikan terhadap jumlah tayangan. Hasil evaluasi model membuktikan bahwa model regresi menujukkan kinerja prediktif yang sangat baik, dengan nilai R² Squared sebesar 0,978, RMSE sebesar 0,0742, dan MSE sebesar 0,0055. Riset ini memberikan gambaran praktis kepada konten kreator dan konten marketing dalam merancang produksi konten yang lebih optimal. Model prediksi ini juga dapat dimanfaatkan untuk memperkirakan potensi engagement suatu video sebelum dipublikasikan.
Pengembangan Sistem Pakar untuk Diagnosa Dini Penyakit Paru Obstruktif Kronis Menggunakan Decision Tree dan Dempster-Shafer Berbasis Mobile: Development of an Expert System for Early Diagnosis of Chronic Obstructive Pulmonary Disease Using Mobile-Based Decision Tree and Dempster-Shafer Methods Pambudi, Yulianto; Ramdani, Ahmad Luky; Yunmar, Rajif Agung; Soemarwoto, Retno Ariza S.
MALCOM: Indonesian Journal of Machine Learning and Computer Science Vol. 5 No. 2 (2025): MALCOM April 2025
Publisher : Institut Riset dan Publikasi Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.57152/malcom.v5i2.1988

Abstract

Seiring dengan pertumbuhan penduduk, perkembangan industri serta meningkatnya kebutuhan transportasi mengakibatkan meningkatnya pencemaran udara di alam bebas perkotaan dan subperkotaan. Akibat yang ditimbulkan dari pencemaran udara berupa batuk, sesak napas, dan iritasi mukosa saluran pernapasan dapat mengakibatkan risiko terkena Penyakit Paru Obstruktif Kronis (PPOK). PPOK merupakan penyakit yang menghambat aliran udara saluran pernapasan yang tidak sepenuhnya reversibel. Masyarakat sering mengabaikan gejala-gejala dini pada PPOK, sedangkan diagnosa dini pada PPOK merupakan hal yang penting. Selain itu fasilitas kedokteran dan minimnya jumlah dokter spesialis paru-paru, menyebabkan semakin banyak masyarakat yang mengidap PPOK. Berdasarkan permasalahan tersebut, penelitian ini dilakukan dengan mengembangkan sistem pakar menggunakan algoritme Decision Tree dan Dempster-Shafer. Penelitian ini diharapkan dalam membantu masyarakat mendeteksi dini PPOK. Kemudian sistem tersebut diimplementasikan ke perangkat berbasis mobile. Metode pengembangan sistem menggunakan Expert System Development Lifecycle (ESDLC). Pengujian sistem menggunakan teknik Black-Box menunjukkan bahwa sistem yang dibuat berfungsi seperti yang diharapkan. Akurasi sistem pakar ini diuji dengan menggunakan 100 data uji yang berupa rekam medis. Pengujian dilakukan dengan membandingkan hasil diagnosa pakar yang ada pada rekam medis dengan hasil diagnosa aplikasi. Hasil pengujian akurasi mendapatkan nilai sebesar 86%.
Implementasi Computer Vision dalam Mendeteksi Penyakit pada Tanaman Cabai dan Tomat Menggunakan Algoritma Convolutional Neural Networks: Implementation of Computer Vision for Detecting Diseases in Chili and Tomato Plants Using the Convolutional Neural Networks Method Pakiding, Deris; Selao, Ahmad; Wahyuddin, Wahyuddin
MALCOM: Indonesian Journal of Machine Learning and Computer Science Vol. 5 No. 3 (2025): MALCOM July 2025
Publisher : Institut Riset dan Publikasi Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.57152/malcom.v5i3.1989

Abstract

Computer Vision banyak diterapkan dalam bidang pertanian untuk mendeteksi penyakit tanaman secara otomatis. Penelitian ini mengembangkan aplikasi berbasis web menggunakan Algoritma Convolutional Neural Networks (CNN) untuk mendeteksi penyakit pada tanaman cabai dan tomat. Aplikasi ini dibangun dengan HyperText Markup Language (HTML), Cascading Style Sheets (CSS), Python, JavaScript, dan Flask, memungkinkan pengguna mengunggah gambar tanaman untuk diklasifikasikan. Model CNN mencapai akurasi pelatihan 91%. Saat diuji menggunakan dataset terpisah, model memperoleh akurasi tinggi. Namun, setelah diterapkan dalam aplikasi untuk deteksi nyata, akurasi menurun menjadi 75%, yang bisa disebabkan oleh kondisi pencahayaan, kualitas gambar, dan perbedaan dataset. Kesalahan untuk deteksi nyata terutama terjadi pada kelas Cabai Leaf Curl 50% dan Tomat Normal 40% dari masing-masing 10 kali uji deteksi sampel. Analisis kinerja model menggunakan precision, recall, dan F1-score menunjukkan bahwa Cabai Leaf Curl memiliki recall tertinggi sebesar 0.9619 dan memiliki precision tertinggi 0.9711. Sementara pada Tomat Late Blight mendapatkan skor terendah pada Recall 0.7594 dan F1-Score 0.8510, menunjukkan tantangan dalam klasifikasi. Analisis heatmap mengungkapkan bahwa model berfokus pada fitur gambar tertentu tetapi tidak selalu pada area penyakit. Peningkatan kinerja melalui optimasi preprocessing data, augmentasi gambar, dan arsitektur model yang lebih kompleks diperlukan untuk meningkatkan akurasi serta mengurangi kesalahan klasifikasi.