cover
Contact Name
Juhari
Contact Email
juhari@uin-malang.ac.id
Phone
+6281336397956
Journal Mail Official
jrmm@uin-malang.ac.id
Editorial Address
Jalan Gajayana 50 Malang, Jawa Timur, Indonesia 65144 Faximile (+62) 341 558933
Location
Kota malang,
Jawa timur
INDONESIA
Jurnal Riset Mahasiswa Matematika
ISSN : 28081552     EISSN : 28084926     DOI : https://doi.org/10.18860/jrmm
Core Subject : Education,
Jurnal Riset Mahasiswa Matematika (JRMM) publishes current research articles in any area of Mathematics Research such as graph labelings, modeling, statistics, actuaria, optimal network problems, metric dimension, graph coloring, rainbow connection and other related topics. JRMM is published six times a year, namely in February, April, June, August, October, December JRMM is published by the Association of Indonesian Islamic Religious University Mathematics Lecturers and Department of Mathematics Universitas Islam Negeri Maulana Malik Ibrahim Malang (UIN Malang). All papers will be refereed in the normal manner of mathematical journals to maintain the high standards. JRMM is an open access journal. Full-text access to all papers is available for free. Jurnal Riset Mahasiswa Matematika (JRMM) has been indexed by Google Scholar
Articles 180 Documents
Analisis Korelasi Kanonik pada Laju Pertumbuhan Penduduk dan Umur Harapan Hidup di Provinsi Jambi Ramadhan, M. Rizky; Kholijah, Gusmi
Jurnal Riset Mahasiswa Matematika Vol 4, No 5 (2025): Jurnal Riset Mahasiswa Matematika
Publisher : Mathematics Department, Maulana Malik Ibrahim State Islamic University of Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18860/jrmm.v4i5.33034

Abstract

Laju pertumbuhan penduduk dan umur harapan hidup merupakan indikator penting untu meningkatkan kesejahteraan masyarakat. Kedua indikator ini penting untuk memahami kualitas hidup, dinamika penduduk, dan tingkat kesehatan masyarakat. Peneltian ini dilakukan karena relevansinya dengan kebutuhan untuk memahami hubungan antara variabel-variabel, sehingga dapat memberikan informasi yang lebih dalam merancang kebijakan pembangunan berbasis data serta dapat meningkatkan tingkat kesejahteraan masyarakat Provinsi Jambi. Analisis korelasi kanonik dipilih karena metode ini memungkinkan untuk menganalisis dan memahami hubungan multivariat dari dua set variabel yang kompleks. Berdasarkan hasil analisis yang dilakukan, fungsi kanonik yang dihasilkan sebanyak dua fungsi dimana fungsi kanonik pertama yang memiliki hubungan yang kuat dan signiikan antara set variabel dan set variabel ,. Secara keseluruhan, dari analisis korelasi kanonik terlihat bahwa indikator laju pertumbuhan ekonomi, tingkat partisipasi angkatan kerja, persentase penduduk miskin, dan kepadatan penduduk memiliki kontribusi dalam mempengaruhi laju pertumbuhan penduduk dan umur harapan hidup di Provinsi Jambi.
Penerapan Kriptosistem Niederreiter Menggunakan Kode Goppa Biner untuk Mendukung Keamanan Data dalam Sistem Kriptografi Modern Chusnia, Aldina Laili; Khudzaifah, Muhammad; Herawati, Erna
Jurnal Riset Mahasiswa Matematika Vol 4, No 3 (2025): Jurnal Riset Mahasiswa Matematika
Publisher : Mathematics Department, Maulana Malik Ibrahim State Islamic University of Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18860/jrmm.v4i3.31216

Abstract

The advancement of modern cryptography presents new challenges posed by quantum computers, necessitating the development of stronger encryption processes. One of the post-quantum cryptographic methods capable of providing protection against such threats is the Niederreiter cryptosystem based on binary Goppa codes. In this study, binary Goppa codes are utilized in the formation of public and private keys, as well as in the decoding process. The implementation employs a specific polynomial over a finite field of order sixteen, resulting in code parameters with a length of 12, a dimension of 4, and the capability to correct up to two errors. Goppa codes are applied in the error correction process through syndrome calculation, enabling the detection and correction of erroneous bits and accurate recovery of the original message. The results demonstrate that binary Goppa codes are effective in detecting and correcting errors, thereby ensuring message integrity. This research is expected to contribute to the development of more robust cryptosystems for maintaining information confidentiality in the rapidly evolving digital era.
Dynamical Analysis of New Fractional Order ZIKV Model with Nonlinear Incidence Rate Hidayati, Nurul Anggraeni
Jurnal Riset Mahasiswa Matematika Vol 4, No 4 (2025): Jurnal Riset Mahasiswa Matematika
Publisher : Mathematics Department, Maulana Malik Ibrahim State Islamic University of Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18860/jrmm.v4i4.31194

Abstract

The ZIKV model provided is derived by adapting the model proposed by \cite{Hidayati2021}. This study enhances the existing model by transforming it into a fractional-order ZIKV model with a nonlinear incidence rate. The model's equilibrium points are identified, and the stability conditions for each point are evaluated using the Routh-Hurwitz criterion. A numerical simulation is performed to validate the stability study results. Numerical simulations further demonstrate the impact of the order $\alpha$ on the stability of the equilibrium point inside the model.
Perbandingan FTS Ruey Chyn Tsaur dan Saxena Easo Dalam Meramalkan Kunjungan Wisatawan Mancanegara Di Bali Ulopo, Asrul S; Djakaria, Ismail; Nashar, La Ode; Hasan, Isran K; Asriadi, Asriadi
Jurnal Riset Mahasiswa Matematika Vol 4, No 5 (2025): Jurnal Riset Mahasiswa Matematika
Publisher : Mathematics Department, Maulana Malik Ibrahim State Islamic University of Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18860/jrmm.v4i5.33304

Abstract

Provinsi Bali merupakan destinasi wisata utama di Indonesia yang setiap tahunnya menarik jutaan wisatawan mancanegara. Kunjungan wisatawan mancanegara di Provinsi Bali Januari sampai Juli 2024 menyambut kedatangan 3.538.899 wisatawan mancanegara, menunjukkan peningkatan signifikan sebesar 22,18% dibandingkan periode yang sama pada tahun sebelumnya. Peningkatan jumlah kunjungan tersebut menjadi indikator penting dalam pengembangan sektor pariwisata sekaligus penopang utama perekonomian daerah. Oleh karena itu, peramalan jumlah kunjungan wisatawan mancanegara di Bali menjadi langkah strategis untuk mendukung perencanaan dan pengambilan kebijakan yang efektif serta pengelolaan destinasi yang berkelanjutan. Penelitian ini bertujuan untuk membandingkan akurasi metode Fuzzy Time Series Ruey Chyn Tsaur dan Fuzzy Time Series Saxena Easo dalam meramalkan jumlah kunjungan wisatawan mancanegara di Bali. Data yang digunakan merupakan data sekunder dari Badan Pusat Statistik selama periode Januari 2005 hingga Desember 2024. Hasil penelitian menunjukkan bahwa FTS Ruey Chyn Tsaur memiliki tingkat akurasi yang lebih tinggi dengan nilai MAPE sebesar 5,544%, dibandingkan dengan FTS Saxena Easo yang menghasilkan MAPE sebesar 8,9256%. Kedua metode termasuk dalam kategori sangat akurat karena nilai MAPE yang diperoleh berada di bawah 10%. Evaluasi model terbaik menunjukkan bahwa pendekatan tersebut menghasilkan nilai MAPE sebesar 6,811%.
Implementasi Kode Goppa dalam Kriptosistem McEliece untuk Keamanan Data Terhadap Serangan Kuantum Khoiriyah, Lili; Khudzaifah, Muhammad; Herawati, Erna
Jurnal Riset Mahasiswa Matematika Vol 4, No 3 (2025): Jurnal Riset Mahasiswa Matematika
Publisher : Mathematics Department, Maulana Malik Ibrahim State Islamic University of Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18860/jrmm.v4i3.31212

Abstract

The importance of data security in the digital era is growing, particularly in the face of quantum computing threats against classical cryptographic algorithms. One of the main candidates for post-quantum cryptography is the McEliece cryptosystem, which employs error-correcting codes to enhance encryption strength. This study implements Goppa codes within the McEliece cryptosystem to increase resistance against quantum attacks. A degree-two polynomial over a finite field with sixteen elements was used, resulting in code parameters with a length of twelve, a dimension of four, and the ability to correct two errors. Encryption is carried out by multiplying the binary message with the public key and adding a random error vector, while decryption utilizes the private key to correct errors through syndrome calculation. The results demonstrate that employing Goppa codes enhances system security by complicating the ciphertext structure, thereby strengthening resilience against quantum-based attacks. This implementation confirms that classical coding techniques remain relevant and effective in supporting modern cryptography.
Prediksi Wisatawan Mancanegara di Indonesia Menggunakan Metode SARIMAX dengan Efek Variasi Kalender Libur Nasional Pakaya, Desya Neydi Putri; Achmad, Novianita; Hasan, Isran K; Wungguli, Djihad; Abdussamad, Siti Nurmardia
Jurnal Riset Mahasiswa Matematika Vol 4, No 6 (2025): Jurnal Riset Mahasiswa Matematika
Publisher : Mathematics Department, Maulana Malik Ibrahim State Islamic University of Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18860/jrmm.v4i6.34937

Abstract

Fluctuations in the number of foreign tourist arrivals often produce outlier values that can interfere with the accuracy of the forecasting model. This study uses a boxplot approach to detect outliers, followed by Natural Logarithm (ln) transformation as a treatment step. The Seasonal Autoregressive Integrated Moving Average with Exogenous Variables (SARIMAX) method is applied by considering three exogenous variables that show the effect of variations in the National Holiday calendar in the form of Nyepi Day, Idul Fitri Day and year-end holidays. The results of the analysis show that the three variables have a positive effect on the increase in the number of foreign tourist arrivals, where Nyepi Day makes the largest contribution compared to the other two holiday periods. Model 2 (0,1,1)(1,0,1)[12] was selected as the most optimal model based on the evaluation results of several models that have been compared. This model shows excellent performance, indicated by the Mean Absolute Percentage Error (MAPE) value of 3.75\% which indicates that the model has very high prediction accuracy. So that the SARIMAX model is effective in modeling and predicting the number of foreign tourist visits in Indonesia.
Pemanfaatan Persamaan Diophantine Linear dalam Membangkitkan Kunci Privat pada Algoritma RSA Purwandi, Tahang; Rozi, Syamsyida
Jurnal Riset Mahasiswa Matematika Vol 4, No 6 (2025): Jurnal Riset Mahasiswa Matematika
Publisher : Mathematics Department, Maulana Malik Ibrahim State Islamic University of Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18860/jrmm.v4i6.34656

Abstract

The RSA algorithm is one of the most widely used public-key cryptographic algorithms due to its security, which is based on the difficulty of factoring large integers. One of the crucial steps in this algorithm is the generation of the private key, which mathematically involves solving an integer equation. This study aims to formally demonstrate that this process can be formulated as a linear Diophantine equation problem. The method involves transforming a congruence equation into a two-variable linear equation and solving it using the extended Euclidean algorithm. A case study is conducted by selecting two large prime numbers and a specific public key value. The results show that a private key value of 1197031 can be obtained from the solution of the Diophantine equation and successfully used to decrypt the message back into its original text. These findings indicate that the mathematical structure of the RSA algorithm can be fully explained through an elementary number theory approach, thereby enhancing conceptual understanding of the algorithm.
Prediksi Harga Emas Dunia Menggunakan Deep Learning GRU dengan Optimasi Nadam Harmain, Ismail Saputra R.; Nurwan, Nurwan; Hasan, Isran K.; Wungguli, Djihad; Yahya, Nisky Imansyah
Jurnal Riset Mahasiswa Matematika Vol 4, No 6 (2025): Jurnal Riset Mahasiswa Matematika
Publisher : Mathematics Department, Maulana Malik Ibrahim State Islamic University of Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18860/jrmm.v4i6.36007

Abstract

Volatilitas harga emas yang tinggi menuntut adanya metode prediksi yang andal untuk mendukung pengambilan keputusan investasi. Penelitian ini mengimplementasikan algoritma Gated Recurrent Unit (GRU) berbasis deep learning yang dioptimalkan menggunakan Nesterov-Accelerated Adaptive Moment Estimation (Nadam) untuk memprediksi harga emas harian.Model terbaik diperoleh dengan nilai Mean Squared Error (MSE) sebesar 0, 00012 pada data univariat dan 0, 00027 pada data multivariat. Mean Absolute Percentage Error (MAPE) yang diperoleh masing-masing sebesar 1,107% untuk data univariat dan 1,59% untuk data multivariat. Hasil tersebut mengindikasikan bahwa model GRU dengan optimasi Nadam memiliki performa prediksi yang tinggi, baik pada data deret waktu tanpa penambahan fitur maupun dengan penambahan fitur.
Perbandingan Akurasi Fuzzy Time Series Chen Berbasis FCM dan Fuzzy Time Series Lee pada Peramalan Harga Batu Bara Juliani, Juliani; Alisah, Evawati; Abdussakir, Abdussakir
Jurnal Riset Mahasiswa Matematika Vol 5, No 1 (2025): Jurnal Riset Mahasiswa Matematika
Publisher : Mathematics Department, Maulana Malik Ibrahim State Islamic University of Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18860/jrmm.v5i1.33349

Abstract

Fuzzy time series is a forecasting method that handles data uncertainty by applying fuzzy set theory. This study compares the forecasting accuracy of the Chen fuzzy time series method, modified using Fuzzy C-Means (FCM), and the Lee method in predicting Indonesian coal prices from January 2019 to December 2023. The Chen method is en hanced by generating fuzzy intervals through FCM to better reflect data distribution, while the Lee method uses weighted fuzzy logical relationships. Forecast accuracy is measured using Mean Absolute Percentage Error (MAPE). The modified Chen method achieves a MAPE of 2.56% compared to 5.07% for the Lee method. These results show that cluster ing techniques like FCM can improve fuzzy time series forecasting. This contrasts with earlier studies that favored the Lee method and highlights the potential of adaptive interval construction for volatile commodity prices. The proposed modification offers a promising alternative for improving prediction accuracy in economic time series.
Cross-Dataset Evaluation of Support Vector Machines: A Reproducible, Calibration-Aware Baseline for Tabular Classification Syafi'ah, Nurus; Jamhuri, Mohammad; Pranata, Farahnas Imaniyah; Kusumastuti, Ari; Juhari, Juhari; Pagalay, Usman; Khudzaifah, Muhammad
Jurnal Riset Mahasiswa Matematika Vol 4, No 6 (2025): Jurnal Riset Mahasiswa Matematika
Publisher : Mathematics Department, Maulana Malik Ibrahim State Islamic University of Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18860/jrmm.v4i6.33438

Abstract

Support Vector Machines (SVMs) remain competitive for small and medium-sized tabular classification problems, yet reported results on benchmark datasets vary widely due to inconsistent preprocessing, validation, and probability calibration. This paper presents a calibration-aware, cross-dataset benchmark that evaluates SVMs against classical baselines—Logistic Regression, Decision Tree, and Random Forest—under leakage-safe pipelines and statistically principled protocols. Using three representative binary datasets (Titanic survival, Pima Indians Diabetes, and UCI Heart Disease), we standardize imputation, encoding, scaling, and nested cross-validation to ensure comparability. Performance is assessed not only on discrimination metrics (accuracy, precision, recall, F1, PR--AUC) but also on probability reliability (Brier score, Expected Calibration Error) and threshold optimization. Results show that tuned RBF--SVMs consistently outperform Logistic Regression and Decision Trees, and perform comparably to Random Forests. Calibration (Platt scaling, isotonic regression) substantially reduces error and improves decision quality, while domain-specific features enhance Titanic prediction. By embedding all steps in a transparent, reproducible protocol and validating across multiple datasets, this study establishes a rigorous methodological baseline for SVMs in tabular binary classification, providing a reference point for future machine learning research.