This Author published in this journals
All Journal Jurnal Informatika dan Teknik Elektro Terapan JOIV : International Journal on Informatics Visualization International Journal of Artificial Intelligence Research Journal of Information Technology and Computer Science (JOINTECS) Syntax Literate: Jurnal Ilmiah Indonesia JURNAL TEKNIK INFORMATIKA DAN SISTEM INFORMASI Conference on Innovation and Application of Science and Technology (CIASTECH) J-SAKTI (Jurnal Sains Komputer dan Informatika) JURTEKSI Jutisi: Jurnal Ilmiah Teknik Informatika dan Sistem Informasi Jusikom: Jurnal Sistem Informasi Ilmu Komputer Jurnal Ilmu Komputer dan Bisnis Systematics Techno Xplore : Jurnal Ilmu Komputer dan Teknologi Informasi Jurnal Teknologi Dan Sistem Informasi Bisnis Buana Ilmu Buana Information Technology and Computer Sciences (BIT and CS) Jurnal Accounting Information System (AIMS) INTERNAL (Information System Journal) International Journal of Educational Review Journal of Applied Data Sciences Jurnal Cahaya Mandalika Jurnal FASILKOM (teknologi inFormASi dan ILmu KOMputer) Djtechno: Jurnal Teknologi Informasi KLIK: Kajian Ilmiah Informatika dan Komputer Instal : Jurnal Komputer J-SAKTI (Jurnal Sains Komputer dan Informatika) Jurnal Minfo Polgan (JMP) Abdimas Jurnal Ilmiah Sistem Informasi dan Ilmu Komputer Jurnal Sistem Informasi STORAGE: Jurnal Ilmiah Teknik dan Ilmu Komputer Innovative: Journal Of Social Science Research Jurnal Accounting Information System (AIMS) INTERNAL (Information System Journal) Jurnal Ilmiah Pengabdian Kepada Masyarakat (Nyiur-Dimas) Informasi interaktif : jurnal informatika dan teknologi informasi
Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : Journal of Applied Data Sciences

Classification of Starling Images Using a Bayesian Network Hananto, April Lia; Rahman, Aviv Yuniar; Paryono, Tukino; Priyatna, Bayu; Hananto, Agustia; Huda, Baenil
Journal of Applied Data Sciences Vol 6, No 1: JANUARY 2025
Publisher : Bright Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47738/jads.v6i1.423

Abstract

The classification of starling species is vital for biodiversity conservation, especially as some species are endangered. This research investigates the effectiveness of the Bayesian Network (BayesNet) for classifying starling species and compares its performance with Artificial Neural Networks (ANN) and Naive Bayes models. The dataset comprises 300 images of five starling species—Bali, Rio, Moon, Kebo, and Uret—captured under controlled conditions. Feature extraction focused on color, texture, and shape, while data augmentation through slight image rotations was applied to enhance model generalization. The BayesNet model achieved an accuracy of 96.29% using a 90:10 training-to-testing split, outperforming ANN (90.74%) and Naive Bayes variants. Precision, recall, F1-score, and AUC-ROC values further validated the robustness of the BayesNet model, with precision at 0.90, recall at 0.91, F1-score at 0.92, and AUC-ROC at 0.95. These results demonstrate the superior performance of multi-feature Bayesian Networks in starling classification compared to other machine learning models. The novelty of this study lies in its application of a probabilistic approach using Bayesian Networks, which enhances interpretability and performance, especially in scenarios with limited data. Future work may explore additional feature sets and advanced machine learning models to further improve classification accuracy and robustness.