Claim Missing Document
Check
Articles

Found 19 Documents
Search

Rancang Bangun Sistem Penyortir Warna Berbasis Mikrokontroler Atmega328p Pada UD Ilham Jaya Makmur Anus wuryanto - Universitas BSI Jakarta
SPEED - Sentra Penelitian Engineering dan Edukasi Vol 11, No 1 (2019): Speed 2019
Publisher : APMMI - Asosiasi Profesi Multimedia Indonwsia

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (833.548 KB) | DOI: 10.55181/speed.v11i1.319

Abstract

A color sorter system using TCS3200 sensor is based on Atmega328p Microcontroller with C language programming. Color sensor is for differentiating color data which is taken. The system consists of hardware and software. The hardware consists of ATmega328p microcontroller, TCS3200 color sensor. The microcontroller software in this study is made using the Arduino IDE application 1.6.8. For activating, the sensor needs to take the data of each color object which is brought closer. Data retrieval using servo motor that serves to replace the sensor position. The position of the object retrieval must be precise, in this case is intended the color sensor can read the color of the exact object. If  there is an inappropriate position after the data retrieval and testing process, then the resulting output can’t be able detect the color. The color object will perform according to the exact position when capturing the color data. Microcontroller to process the input data that have been taken. After the process is complete then the color sensor  testing result can be seen from the LCD as t he color information which is displayed, during the data retrieval of the color object then the object is forwarded by the servo motor towards the container glass. So the objects can be grouped according to their color.Keywords: Color sorter, TSC3200 color sensor. Sistem penyortir warna menggunakan sensor TCS3200 berbasis mikrokontroler Atmega328p dengan pemrograman bahasa C. Sensor warna untuk membedakan warna data yang diambil. Sistem terdiri atas perangkat keras dan perangkat lunak. Perangkat keras terdiri atas mikrokontroler ATmega328p, sensor warna TCS3200, Perangkat lunak mikrokontroler dalam penelitian ini dibuat dengan menggunakan aplikasi IDE Arduino 1.6.8. Untuk mengaktifkan sensor perlu pengambilan data setiap objek warna yang didekatkan. Pengambilan data menggunakan motor servo yang berfungsi untuk menggantikan sensor posisi. Posisi pengambilan objek harus tepat, hal ini bertujuan supaya sensor warna bisa membaca warna objek yang tepat. Jika terjadi posisi yang tidak tepat setelah proses pengambilan data dan pengujian, maka output yang dihasilkan tidak bisa mendeteksi warna tersebut. Objek warna akan tampil sesuai dengan posisi yang tepat saat pengambilan data warna. Mikrokontroler untuk memproses input yang telah diambil. Setelah proses selesai maka hasil pengujian sensor warna bisa dilihat dari LCD sebagai informasi warna yang ditampilkan saat pengambilan data objek warna kemudian objek diteruskan oleh motor servo kearah gelas penampung, sehingga objek dapat dikelompokkan sesuai warnanya.Kata Kunci : Penyortir warna, Sensor warna TSC3200.
Mrs Perancangan Program Inventory Barang Bangunan Berbasis Web Nurul Afni; Anus Wuryanto; Indhah Pujihastuti
Journal of Students‘ Research in Computer Science Vol. 3 No. 2 (2022): November 2022
Publisher : Program Studi Informatika Fakultas Ilmu Komputer Universitas Bhayangkara Jakarta Raya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31599/jsrcs.v3i2.1545

Abstract

TB. Barokah Jaya Group is a business engaged in trading with its operational activities selling building goods. Inventory of goods plays a very important role in managing the inventory of goods in the warehouse, has problems in managing inventory because it is still using a manual system. Often occurs when checking goods and errors in recording incoming and outgoing goods reports. We need a web-based application as a solution to existing problems using the PHP programming language and codeigniter as a framework. To run the web server the author uses XAMPP. As a result, store owners can check the availability of goods without having to go to the warehouse and manage incoming and outgoing goods by inputting goods data into the application that the author made, so that the results obtained are faster and more accurate. Keywords: Goods Inventory, System, Web-based   AbstrakTB. Barokah Jaya Group merupakan sebuah usaha yang bergerak dalam bidang perdagangan dengan kegiatan operasionalnya menjual barang-barang bangunan. Inventory barang berperan sangat penting dalam pengelolaan persediaan barang yang ada di gudang, memiliki masalah dalam pengelolaan persediaan barang karena masih menggunakan sistem manual. Sering terjadi saat pengecekan barang serta kekeliruan pencatatan laporan barang masuk maupun keluar. Perlu suatu Aplikasi berbasis web sebagai solusi dari permasalahan yang ada dengan menggunakan bahasa pemrograman PHP dan codeigniter sebagai framework. Untuk menjalankan web server peneliti menggunakan XAMPP. Hasilnya, pemilik toko bisa mengecek ketersediaan barang tanpa harus pergi ke gudang serta mengelola barang masuk maupun keluar dengan menginputkan data barang ke dalam aplikasi yang peneliti buat, sehingga hasil yang didapatkan lebih cepat dan akurat. Kata kunci: Inventory Barang, Sistem, Web
Study Of Impulse Buying Behavior On Interest In Using Paylater Facilities In The Marketplace With Celebrity Endorsers As Mediations Zahra Zahra; Dede Suleman; Anus Wuryanto; Etik Dwi Styaningrum; Ratih Setyo Rini; Asep Dony Suhendra; Supriatin Supriatin; Adi Chandra Setiawan
International Journal of Social and Management Studies Vol. 3 No. 6 (2022): December 2022
Publisher : IJOSMAS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5555/ijosmas.v3i6.253

Abstract

The purpose of this study was to examine the effect of impulsive buying behavior on interest in using a paylater with celebrity endorser as an intervening variable. The sample of this study was 100 students in Jakarta who were selected using the convenience sampling method, data were collected using a questionnaire. The collected data is processed using SmartPls 3.0. The results of this study indicate that impulsive buying behavior has a significant effect on interest in using paylater. Celebrity endorser has no significant effect on interest in using paylater, Celebrity endorser also has no significant effect as an intervening variable
Perancangan Sistem Informasi Kepegawaian Berbasis Web Pada Desa Muktiwari Ratih Dwi Asworowati; Anus Wuryanto; Dede Mustomi; Rini Pahmawati Simangunsong
Jurnal Teknologi Dan Sistem Informasi Bisnis Vol 5 No 2 (2023): April 2023
Publisher : Prodi Sistem Informasi Universitas Dharma Andalas

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47233/jteksis.v5i2.789

Abstract

The village government is now increasingly advanced and smooth with the help of various kinds of technology ranging from applications and other supports. The computer is one of the tools that makes it easier in the form of making software and hardware.At this time, Muktiwari village is still conducting data collection manually, specifically for storing personnel data so that there is a high possibility of data errors, delays in the process of searching for employee data and the availability of required data. The method used in this study is direct observation of the administrative staff responsible for the data system,apart from field research, the author also conducts a literature study, namely by collecting sources relevant to the problems that occur. The design of this personnel information system will also use software design with a prototype model.The purpose of designing this system is to simplify the work process of employees and reduce repetitive performance, so that employee data can be stored neatly if at any time data is needed. The results of the design of the Muktiwari village staffing system will be able to increase efficiency and effectively improve the shortcomings of the existing system.
Improving the Accuracy of Heart Failure Prediction Using the Particle Swarm Optimization Method Yuliandari, Dewi; Yudhistira, Yudhistira; Wuryanto, Anus; Sidik, Sidik; Ayu Sariasih, Findi
Sinkron : jurnal dan penelitian teknik informatika Vol. 8 No. 1 (2024): Articles Research Volume 8 Issue 1, January 2024
Publisher : Politeknik Ganesha Medan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33395/sinkron.v9i1.13017

Abstract

Malfunction of the body's organs, heart failure, makes a person and those closest to them feel worried, which will result in the person's death. There are too many deaths caused by this deadly disease every year. The main problem throughout the world is heart disease, the death rate of which is getting higher and higher and is uncontrollable for various parties due to many factors, especially in terms of knowing it early or not being able to predict it accurately. Therefore, the aim of this research on heart failure problems is to improve heart failure predictions with optimal accuracy, namely the neural network method with the particle swarm optimization method. Previously, heart failure prediction research had been carried out using several methods, but here we will increase the accuracy of the methods that have been carried out. After the testing process on the neural network method and after being optimized and getting results from the particle swarm optimization method, the accuracy increased with an increase of 08.35%. As well as increasing AUC results with an increase of 0.067%. From the results of increasing the accuracy of the neural network method, testing the particle swarm optimization method on heart failure disease data can be used as a reference for stakeholders.
Forward Selection as a Feature Selection Method in the SVM Kernel for Student Graduation Data Nurdin, Hafis; Carolina, Irmawati; Andharsaputri, Resti Lia; Wuryanto, Anus; Ridwansyah, Ridwansyah
Sinkron : jurnal dan penelitian teknik informatika Vol. 8 No. 4 (2024): Article Research Volume 8 Issue 4, October 2024
Publisher : Politeknik Ganesha Medan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33395/sinkron.v8i4.14172

Abstract

In the era of information technology development, accurate graduation predictions are important to improve the quality of higher education in Indonesia. This research evaluates the effectiveness of Support Vector Machine (SVM) with various kernels, including Radial Basis Function (RBF), linear, and polynomial, as well as the application of FS as an optimization method. The dataset used consists of student graduation data which includes nine independent attributes and one label. This research aims to increase the accuracy of student graduation predictions using the SVM method which is optimized through Forward Selection (FS). The SVM method is applied using 10-fold cross validation to predict on-time graduation. The results show that the combination of SVM and FS improves prediction accuracy significantly. The SVM model with an RBF kernel optimized with FS achieved the highest accuracy of 87.06% and recall of 53.68%, showing increased sensitivity in identifying student graduation cases compared to SVM without FS. Although there is a trade-off between precision and recall, the model optimized with FS shows better performance overall. This research contributes to the development of a more efficient graduation prediction method, which can help universities in planning strategies to improve academic quality. Further studies are recommended to overcome weaknesses in the recall value by using other optimization methods or combinations of other optimization algorithms
Pemanfaatan Artificial Intelligence Pembuatan Konten Media Sosial Yang Menarik Bagi Remaja Masjid Al Husain Feri Prasetyo H; Anus Wuryanto; Nicodias Palasara; Muhammad Tabrani
PRAWARA Jurnal ABDIMAS Vol 3 No 4 (2024): PRAWARA JURNAL ABDIMAS
Publisher : CV. Manha Digital

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.63297/abdimas.v3i4.129

Abstract

Artificial Intelligence (AI) adalah teknologi yang memungkinkan komputer untuk meniru kemampuan manusia dalam memproses data, belajar, dan mengambil keputusan. Dalam konteks remaja, terutama dalam mendesain media sosial, AI menawarkan berbagai manfaat yang signifikan, seperti membantu desain grafis dengan rekomendasi tata letak, skema warna, dan elemen visual yang menarik, serta personalisasi konten sesuai minat audiens. Dengan memanfaatkan AI, remaja dapat membuat konten media sosial yang lebih efektif dan profesional, sehingga mampu meningkatkan daya tarik dan interaksi pada platform digital. Kegiatan Ini difokuskan pada pemanfaatan AI dalam mendesain konten media sosial bagi remaja BKM (Badan Kesejahteraan Masjid) Al Husain Telaga Murni Cikarang sebagai upaya untuk meningkatkan visibilitas dan aksesibilitas informasi di kalangan komunitas arena Sebagian besar remaja BKM tidak menguasai tentang Desain grafis secara formal,dengan memanfaatkan Teknologi AI memungkinkan produksi konten yang lebih efisien, inovatif. Namun, tidak semua pengguna media sosial memahami cara membuat konten yang menarik atau memanfaatkan algoritma AI secara optimal. Melalui pembelajaran dan penerapan AI, diharapkan remaja dapat menghasilkan konten yang kreatif dan relevan, mendukung aktivitas Kegitan BKM, dan dapat menghasilkan deain konten event yang menarik yang apat di pubilkasikan di media social.
Workshop Ekonomi Kreatif Di Era Digitalisasi Pembuatan Buket Snack Dan Strategi Branding Di Platform Digital Putri, Anisa; Dania Azzahra, Keyza; Prameswari, Vidya; Putri, Rahmayana; Wuryanto, Anus; NIngsih, Rahayu
PRAWARA Jurnal ABDIMAS Vol 4 No 2 (2025): PRAWARA JURNAL ABDIMAS
Publisher : CV. Manha Digital

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.63297/abdimas.v4i2.160

Abstract

Perkembangan teknologi digital telah mendorong pertumbuhan ekonomi kreatif di berbagai sektor, termasuk di wilayah pedesaan. Workshop “Ekonomi Kreatif di Era Digitalisasi: Pembuatan Buket Snack dan Strategi Branding di Platform Digital” yang dilaksanakan di Desa Karanganyar bertujuan untuk membekali masyarakat lokal, khususnya pemuda dan ibu rumah tangga, dengan keterampilan kewirausahaan berbasis kreativitas dan teknologi. Kegiatan ini dirancang untuk meningkatkan pemahaman peserta terhadap peluang bisnis rumahan yang dapat dipasarkan secara online melalui pelatihan pembuatan buket snack yang bernilai jual tinggi dan strategi branding digital menggunakan media sosial seperti Instagram dan TikTok. Metode yang digunakan meliputi pelatihan langsung, demonstrasi produk, serta praktik pengambilan foto dan pembuatan konten promosi. Hasil workshop menunjukkan peningkatan signifikan dalam kemampuan teknis peserta, kepercayaan diri dalam memasarkan produk, serta pemahaman tentang pentingnya konsistensi visual dan storytelling dalam membangun brand. Pelatihan ini menjadi bentuk nyata pemberdayaan masyarakat desa melalui penguatan ekonomi kreatif berbasis digitalisasi. Diharapkan, kegiatan ini dapat mendorong terciptanya pelaku usaha lokal yang mandiri dan mampu bersaing di pasar yang lebih luas.
Optimasi Kernel SVM dengan PSO untuk Gagal Jantung Nurdin, Hafis; Sugiarto, Hari; Yuliandari, Dewi; Wuryanto, Anus; Nawawi, Imam
Jurnal Manajemen Informatika JAMIKA Vol 15 No 2 (2025): Jurnal Manajemen Informatika (JAMIKA)
Publisher : Program Studi Manajemen Informatika, Fakultas Teknik dan Ilmu Komputer, Universitas Komputer Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.34010/jamika.v15i2.14409

Abstract

Accurate early detection is important to improve the quality of life of patients and reduce mortality and a major burden on the public health system caused by heart failure. This study aims to improve the accuracy of heart failure prediction using Support Vector Machine (SVM). SVM is used as a strong classifier for high-dimensional data, then optimizes its kernel using Particle Swarm Optimization (PSO), which has not been widely applied in similar studies. The method used includes computational experiments with a quantitative approach based on heart failure datasets from the UCI Repository which are analyzed using SVM with three types of kernels: Dot, Radial, and Polynomial. PSO is used to optimize the selection of kernel parameters in SVM to improve classification accuracy. The results show that SVM + PSO kernel Dot gives the best performance, with an AUC of 0.865 and an accuracy of 83.97%, and this difference is confirmed significant through a paired t-test (p <0.05) compared to SVM without optimization. PSO optimization consistently improves precision and recall in the tested kernels, indicating stability and effectiveness in classification. The impact of the research is to make a significant contribution to early detection efforts for heart failure which can lead to faster treatment and improved quality of life for patients, but also adds clinical value for medical practitioners seeking efficient and accurate classification methods.