Claim Missing Document
Check
Articles

Found 19 Documents
Search

Isomorphism between Endomorphism Rings of Modules over A Semisimple Ring Susanto, Hery; Irawati, Santi; Hidayah, Indriati Nurul; -, Irawati
Journal of the Indonesian Mathematical Society Volume 26 Number 2 (July 2020)
Publisher : IndoMS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22342/jims.26.2.824.170-174

Abstract

Our question is what ring R which all modules over R are determined, up to isomorphism, by their endomorphism rings? Examples of this ring are division ring and simple Artinian ring. Any semi simple ring does not satisfy this property. We construct a semi simple ring R but R is not a simple Artinian ring which all modules over R are determined, up to isomorphism, by their endomorphism rings.
CHARACTERISTICS OF STUDENTS’ ABDUCTIVE REASONING IN SOLVING ALGEBRA PROBLEMS Hidayah, Indriati Nurul; Sa'dijah, Cholis; Subanji, Subanji; Sudirman, Sudirman
Journal on Mathematics Education Vol 11, No 3 (2020)
Publisher : Department of Doctoral Program on Mathematics Education, Sriwijaya University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22342/jme.11.3.11869.347-362

Abstract

When students solve an algebra problem, students try to deduce the facts in the problem. This step is imperative, students can draw conclusions from the facts and devise a plan to solve the problem. Drawing conclusions from facts is called reasoning. Some kinds of reasoning are deductive, inductive, and abductive. This article explores the characteristics of some types of abductive reasoning used by mathematics education students in problem-solving related to using facts on the problems. Fifty-eight students were asked to solve an algebra problem. It was found that the student’s solutions could be grouped into four types of abductive reasoning. From each group, one student was interviewed to have more details on the types. First, the creative conjectures type, the students can solve the problems and develop new ideas related to the problems; second, fact optimization type, the students make conjecture of the answer, then confirm it by deductive reasoning; third, factual error type, students use facts outside of the problems to solve it, but the facts are wrong; and fourth,  mistaken fact type, the students assume the questionable thing as a given fact. Therefore, teachers should encourage the students to use creative conjectures and fact optimization when learning mathematics.
PELATIHAN PENYUSUNAN SOAL MENGGUNAKAN KAHOOT DAN VALIDITAS SOAL MENGGUNAKAN MODEL RASCH UNTUK GURU MATEMATIKA SMK KOTA BATU Hidayah, Indriati Nurul; Oktoviana, Lucky Tri
PEDULI: Jurnal Ilmiah Pengabdian Pada Masyarakat Vol 5 No 2 (2021)
Publisher : Lembaga Penelitian dan Pengabdian Kepada Masyarakat

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37303/peduli.v5i2.376

Abstract

Asesmen merupakan upaya untuk mendapatkan informasi dari proses dan hasil pembelajaran. Proses assesmen yang baik didukung oleh kualitas soal yang baik dan bisa memberikan informasi yang lengkap dari abilitas siswa. Metode yang dapat digunakan adalah pengukuran pemodelan Rasch (Rasch model measurement) pada data hasil ujian. Pemanfaatan teknologi dalam asesmen salah satunya adalah penyusunan soal online yang interaktif. Salah satu aplikasi yang dapat digunakan dalam penyusunan soal online adalah aplikasi Kahoot yang berbasis platform pembelajaran gratis. Sasaran dari kegiatan pengabdian ini adalah guru matematika SMK di Kota Batu yang tergabung dalam MGMP Matematika SMK Kota Batu.Pengabdian kepada masyarakat ini bertujuan untuk meningkatkan motivasi guru-guru SMK dalam pemanfaatan teknologi untuk meningkatkan kualitas pembelajaran daring baik dari segi penyusunan soal, media soal online maupun validitas dari soal tes yang dibuat. Mekanisme pelaksanaan kegiatan ini dilakukan dengan mengadopsi langkah-langkah action research yang terdiri dari 4 (empat) tahapan, yaitu: perencanaan, tindakan, observasi dan evaluasi, serta refleksi. Pada tahap tindakan, pelaksanaan pengabdian dilakukan menjadi dua kegiatan workshop yang dilakukan secara daring. Workshop pertama memberikan materi Pembuatan soal dan aplikasi Kahoot sedangkan workshop kedua diawali dengan review hasil tugas dari workshop pertama yang sudah diunggah dan pemberian materi pemodelan Rasch dengan alat bantu aplikasi ministep.
CHARACTERISTICS OF STUDENTS’ ABDUCTIVE REASONING IN SOLVING ALGEBRA PROBLEMS Indriati Nurul Hidayah; Cholis Sa'dijah; Subanji Subanji; Sudirman Sudirman
Journal on Mathematics Education Vol 11, No 3 (2020)
Publisher : Department of Doctoral Program on Mathematics Education, Sriwijaya University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22342/jme.11.3.11869.347-362

Abstract

When students solve an algebra problem, students try to deduce the facts in the problem. This step is imperative, students can draw conclusions from the facts and devise a plan to solve the problem. Drawing conclusions from facts is called reasoning. Some kinds of reasoning are deductive, inductive, and abductive. This article explores the characteristics of some types of abductive reasoning used by mathematics education students in problem-solving related to using facts on the problems. Fifty-eight students were asked to solve an algebra problem. It was found that the student’s solutions could be grouped into four types of abductive reasoning. From each group, one student was interviewed to have more details on the types. First, the creative conjectures type, the students can solve the problems and develop new ideas related to the problems; second, fact optimization type, the students make conjecture of the answer, then confirm it by deductive reasoning; third, factual error type, students use facts outside of the problems to solve it, but the facts are wrong; and fourth,  mistaken fact type, the students assume the questionable thing as a given fact. Therefore, teachers should encourage the students to use creative conjectures and fact optimization when learning mathematics.
Isomorphism between Endomorphism Rings of Modules over A Semisimple Ring Hery Susanto; Santi Irawati; Indriati Nurul Hidayah; Irawati -
Journal of the Indonesian Mathematical Society Volume 26 Number 2 (July 2020)
Publisher : IndoMS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22342/jims.26.2.824.170-174

Abstract

Our question is what ring R which all modules over R are determined, up to isomorphism, by their endomorphism rings? Examples of this ring are division ring and simple Artinian ring. Any semi simple ring does not satisfy this property. We construct a semi simple ring R but R is not a simple Artinian ring which all modules over R are determined, up to isomorphism, by their endomorphism rings.
BENTUK CAYLEY COLOR DIGRAPH GRUP SIKLIK G DENGAN ORDER n M. Ariq Zainurrifqi; Mohammad Agung; Indriati Nurul Hidayah
Jurnal Kajian Matematika dan Aplikasinya (JKMA) Vol 3, No 2 (2022): July
Publisher : UNIVERSITAS NEGERI MALANG

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17977/um055v3i22022p1-14

Abstract

Let  G be a cyclic group with set of generators . Let G with color  xi is a digraph with vertices elements of  and there is an arrow from  to  if . In this artcle, we find the Cayley color digraph of a cylic group of order . We also proved the existence of Hamiltonian cycle of the graph
Mathematics in Tie-Dye Batik: Training for Students at SD Bareng 3 Kota Malang Indriati Nurul Hidayah; Joni Akhmad Yusuf; Linda Wahyu Apriliana; Mohamad Vijay; Nilna Umi Latifah; Risdha Putri Isnasari
Jurnal Gembira: Pengabdian Kepada Masyarakat Vol 2 No 03 (2024): JUNI 2024
Publisher : Media Inovasi Pendidikan dan Publikasi

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Bagi siswa SD, matematika merupakan mata pelajaran yang sulit. Sementara, siswa SD masih berada pada tahapan operasional konkrit. Oleh karena itu diperlukan upaya untuk menyajikan matematika dalam bentuk-bentuk konkrit atau semi konkrit agar matematika bagi siswa SD merupakan hal yang menyenangkan. Materi bangun datar disajikan mulai kelas 1 sampai kelas 6 sehingga merupakan materi penting bagi siswa SD. Media yang dapat digunakan untuk mengenalkan bangun datar sekaligus mengasah kreatifitas adalah batik  jumputan. Oleh karena itu, diadakan pelatihan membuat batik jumput yang selain untuk mengenal bangun datar juga mengasah kreatifitas siswa. Pada SD Bareng 3 Kota Malang terdapat ekstrakurikuler menggambar, sehingga wadah itu menjadi tempat yang tepat untuk menyajikan matematika dalam bentuk semi konkrit. Hasil yang diperoleh adalah melalui pelatihan membuat batik jumputan, siswa mengasah kreatifitas, belajar bekerja sama, dan mengenal jenis-jenis bangun datar.
Interpreting Skills to The Student's Mathematical Problem-Solving Process Badi'ah, Siti; As'ari, Abdur Rahman; Hidayah, Indriati Nurul
PRISMA Vol 13, No 1 (2024): PRISMA
Publisher : Universitas Suryakancana

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35194/jp.v13i1.3941

Abstract

The objective of the study was to analyze the teacher's skills, and the interpreting skills of the teacher in identifying the student's ability to solve problems based on the stages developed by Swartz (1998), i.e. generating ideas, clarifying ideas, and assessing the reasonableness of ideas. This type of research is qualitative descriptive research. The data analysis techniques used are data reduction, data presentation, and conclusion drawing. The students involved in solving mathematical problems are named A, B, C, and D. The four teachers involved as research subjects are represented by G1, G2, G3, and G4. Each teacher is given four student answers which are then analyzed. Interpreting skills of each subject are developed by researchers in the way of interviews. The interviews conducted are semi-structured, then the results of the interviews are analyzed by the researchers. Data analysis techniques using the Miles and Huberman model are: 1) data reduction; 2) data display; and 3) concluding drawing. The results show that G2 and G4 have complete interpretation skills, whereas G1 and G3 have interpreting skills that only generate and clarify ideas.
ANALISIS PERKEMBANGAN KOMPETENSI SOSIAL EMOSIONAL SISWA SMP KELAS 7 PADA MODEL PROJECT BASED LEARNING Fitri Rahmawati, Azizah; Nurul Hidayah, Indriati
Jurnal Pembelajaran, Bimbingan, dan Pengelolaan Pendidikan Vol. 4 No. 2 (2024)
Publisher : Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17977/um065.v4.i2.2024.3

Abstract

Tujuan dari penelitian ini untuk mendeskripsikan perkembangan kompetensi sosial emosional peserta didik pada pembelajaran (PjBL) pada materi Hukum II Newton. Jenis penlitian ini mengkombinasikan metode kuantitatif dan kualitatif. Populasi penelitian ini ialah kelas 7 SMPN 6 Malang, dan Teknik Purposive sampling dengan sampel 32kpeserta didik. Instrumen penelitian meliputi teknik non tes, yaitu self asesment dan observasi. Data kuantitatif dianalisis secara deskriptif statistik, dan data kualitatif dianalisis secara deskriptif. Hasil penelitian menunjukan dari 5 kompetensi sosial emosional terdapat peserta didik berkembanggsangat baik, berkembanggsesuai harapan, dan mulai berkembang. Penelitian_ini didukung hasil observasi yang menunjukan peserta didik antusias dan dari pembelajaran proyek yang diterapkan dapat membangun perkembang sosial emosional peserta didik. Dengan demikian, hasil analisis data menunjukan adanya perkembangan kompetensi sosial emosional dalam pembelajaran PJBL. Keterbatasan penelitianPini sampel yang digunakan dalam skala kecil, harapannya penelitian selanjutkan dapat menggunakan sampel dalam skala besar dan menambahkan instrumen wawancara
ANALISIS PENDEKATAN TARL DALAM MODEL PEMBELAJARAN PJBL PADA MATA PELAJARAN IPA Rosyidah, Nurlaili; Hidayah, Indriati Nurul
Jurnal Pembelajaran, Bimbingan, dan Pengelolaan Pendidikan Vol. 4 No. 4 (2024)
Publisher : Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17977/um065.v4.i4.2024.5

Abstract

In the subject of Natural Sciences, PjBL offers the ability to enhance students' understanding of concepts and scientific skills through practical exploration activities. However, in its implementation, the PjBL model also faces several challenges. Some of these include difficulties in integrating a dense curriculum with project-based learning approaches, resource limitations, and challenges in assessing students' achievements comprehensively. In an effort to address these challenges, an innovative learning approach emerged, namely Teaching at the Right Level (TaRL). The aim of this research is to analyze the TaRL approach within the PjBL model in the science subject, focusing on how the combination of these two methodologies can enhance student engagement and motivation. This research method employs descriptive research using a qualitative approach. Data collection techniques in this study include observation and documentation. The research instruments used in this study include observation and document analysis. The results of applying this approach have been proven to increase student engagement in learning, as it provides opportunities for them to learn independently and collaborate on challenging projects. Although it has not fully enhanced students' intrinsic motivation towards learning science.