Claim Missing Document
Check
Articles

Found 38 Documents
Search

Penguatan Literasi Matematika dan Sains melalui Pengelolaan Perpustakaan di Madrasah Tsanawiyah Padang Pariaman Hasibuan, Lilis Harianti; Jannah, Miftahul; Putri, Darvi Mailisa; Annur, Lathifah; Syahadah, Nadila
Jurnal Pengabdian Pada Masyarakat Vol 9 No 2 (2024): Jurnal Pengabdian Pada Masyarakat
Publisher : Universitas Mathla'ul Anwar Banten

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30653/jppm.v9i2.749

Abstract

Literasi adalah salah satu keterampilan yang harus dimiliki untuk menghadapi kemajuan teknologi saat ini. Kemampuan literasi membantu seseorang memahami suatu informasi secara akurat sehingga terhindar dari berita hoax yang marak beredar. Selanjutnya, dengan kemampuan literasi seseorang bisa berbagi pengetahuan melalui karya tulis yang berkualitas. Kemampuan literasi harus dilatih sejak dini, khususnya kemampuan literasi matematika dan sains. Kemampuan ini membuat seseorang dapat merumuskan, menggunakan dan menafsirkan matematika dalam berbagai konteks kehidupan yang tercangkup pada konsep, prosedur, fakta dan angka. Salah satu upaya yang dapat dilakukan untuk meningkatkan literasi matematika dan sains di sekolah adalah pengoptimalan peran perpustakaan. Metode yang digunakan dalam pengaplikasian upaya ini adalah service learning dimana metode yang membangun budaya pelayanan dan keterlibatan untuk bekerja bersama. Diperoleh dari hasil penelitian bahwa penguatan literasi matematika dan sains dapat dilakukan melalui pengoptimalan peran perpustakaan. Misalnya, diupayakan penyediaan ruang baca yang nyaman, tersedianya buku bacaan yang lengkap dan menarik. Ditambah program kunjungan perpustakaan dan pengelolaan pustaka meliputi adanya perencanaan, pengorganisasian, pelaksanaan dan pengawasan. Literacy is one of the skills that must be possessed to deal with today's technological advances. Literacy skills help a person understand information accurately so as to avoid hoax news that is rampant in circulation. Furthermore, with literacy skills one can share knowledge through quality written works. Literacy skills must be trained from an early age, especially math and science literacy skills. This ability allows a person to formulate, use and interpret mathematics in various life contexts that include concepts, procedures, facts and figures. One of the efforts that can be made to improve mathematics and science literacy in schools is to optimize the role of the library. The method used in the application of this effort is service learning which builds a culture of service and engagement to work together. The research found that strengthening mathematics and science literacy can be done through optimizing the role of the library. For example, the provision of a comfortable reading room, the availability of complete and interesting reading books. In addition, library visit programs and library management include planning, organizing, implementing and monitoring.
ANALISIS REGRESI LOGISTIK ORDINAL TERHADAP FAKTOR-FAKTOR YANG MEMPENGARUHI PREDIKAT KELULUSAN MAHASISWA SARJANA UIN IMAM BONJOL PADANG Sholih, Ahmad Shubhi; Hasibuan, Lilis Harianti; Rianjaya, Ilham Dangu
MAp (Mathematics and Applications) Journal Vol 6, No 2 (2024)
Publisher : Universitas Islam Negeri Imam Bonjol Padang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15548/map.v6i2.10075

Abstract

Perguruan tinggi mempunyai kewajiban untuk menjaga kualitas prestasi akademik mahasiswanya agar menghasilkan lulusan yang berkualitas. Tujuan dari penelitian ini adalah mengetahui faktor-faktor yang mempengaruhi predikat izin. Predikat pelamar dipengaruhi oleh beberapa faktor tertentu. Dalam penelitian ini variabel respon adalah predikat kelulusan dengan tipe data ordinal, yang terdiri dari pujian, sangat memuaskan dan memuaskan. analisis regresi logistik ordinal merupakan salah satu metode yang tepat karena variabel respon mempunyai skala ordinal (bertingkat). Terdapat beberapa variabel prediktor yang diduga berpengaruh pada predikat pernikahan antara lain jenis kelamin, fakultas, asal daerah dan lama studi. Data tersebut merupakan data sekunder dari Badan Administrasi Akademik dan Kemahasiswaan (BAAK) UIN Imam Bonjol. Predikat kelulusan dengan jumlah pujian memiliki angka sebesar 23,53%, sangat memuaskan 70,42% dan memuaskan 6,05%. Dengan pengujian serentak seluruh variabel prediktor secara simultan berpengaruh signifikan terhadap variabel respon, namun model regresi logistik ordinal yang diperoleh tidak cocok dengan data yang lemah karena variabel bebas sehingga semua variabel bebasnya terjadi signifikan.
PENGENALAN DAN PELATIHAN APLIKASI CANVA SEBAGAI PROSES DIGITALISASI MEDIA PEMBELAJARAN GURU-GURU MAN 4 TANAH DATAR Rizqullah, Muhammad Naufan; Sudirman, Subhan Ajrin; Lestari, Novia; Sepri, Domi; Yuharnida, Yuharnida; Putri, Darvi Mailisa; Hasibuan, Lilis Harianti; Pribadi, Bagus
Journal of Social Outreach Vol 3, No 2 (2024): Journal of Social Outreach
Publisher : Fakultas Sains dan Teknologi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15548/jso.v3i2.9730

Abstract

Dalam rangka memperkuat Digitalisasi di seluruh Madrasah, Fakultas Sains dan Teknologi UIN Imam Bonjol Padang menyelenggarakan kegiatan bertema Literasi Sains dan Teknologi di berbagai madrasah di Sumatera Barat. Salah satunya bertempat di MAN 4 Tanah Datar dalam bentuk pengenalan dan pelatihan aplikasi Canva. Kegiatan ini bertujuan untuk meningkatkan kompetensi digital guru-guru MAN 4 Tanah Datar yang diarahkan dalam proses inovasi dan kreatifitas pembuatan media pembelajaran yang dapat digunakan dalam proses belajar mengajar.  Metode yang digunakan dalam kegiatan ini meliputi beberapa proses yaitu Pemetaan, Perencanaan, Pelaksanaan dan Evaluasi. Proses kegiatan ini dilakukan dalam bentuk pendampingan dari tim fasilitator Fakultas Sains dan Teknologi UIN Imam Bonjol Padang terhadap guru-guru di lingkungan MAN 4 Tanah Datar. Hasil kegiatan ini setiap guru MAN 4 Tanah Datar terikutsertakan dalam pelatihan membuat Media Pembelajaran berupa poster dan persentasi sesuai dengan mata pelajaran yang diampu. Pelatihan Canva dengan model Workshop dianggap tepat untuk mengeluarkan potensi guru dalam belajar menggunakan aplikasi secara langsung.
COMPARISON BETWEEN BAYESIAN QUANTILE REGRESSION AND BAYESIAN LASSO QUANTILE REGRESSION FOR MODELING POVERTY LINE WITH PRESENCE OF HETEROSCEDASTICITY IN WEST SUMATRA Hasibuan, Lilis Harianti; Yanuar, Ferra; Devianto, Dodi; Maiyastri, Maiyastri; Rudiyanto, Rudiyanto
BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 19 No 3 (2025): BAREKENG: Journal of Mathematics and Its Application
Publisher : PATTIMURA UNIVERSITY

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30598/barekengvol19iss3pp1587-1596

Abstract

The poverty line is the threshold income level below which a person or household is considered to be living in poverty. The poverty line is a representation of the minimum rupiah amount needed to meet the minimum basic food needs equivalent to 2100 kilocalories per capita per day and basic non-food needs. According to data from the Central Bureau of Statistics (BPS), although the poverty rate in West Sumatra has decreased in recent years, the issue of poverty is still very relevant to be discussed and addressed. The issue of the poverty line is important to discuss because it is directly related to the welfare of people and the development of a country. For modeling the poverty line and its influencing factors, appropriate statistical methods are needed. This research is about the comparison of two methods, namely the Bayesian quantile regression method and Bayesian LASSO quantile regression. The two methods are compared with the aim of seeing which method produces the smallest error. Bayesian quantile regression is one method that can model data assuming heteroscedasticity violations. This study compares the ordinary Bayesian quantile regression method with penalized LASSO. These two methods are applied in modeling the poverty line in West Sumatra. The purpose of this study is to see the best method for modeling data. The data used amounted to 133 data points from BPS in the years 2017 and 2023. Model parameters were estimated using MCMC with a Gibbs sampling approach. The results show that the Bayesian LASSO method is superior to the method without LASSO. This is evidenced that the superior method produces the smallest MSE value, 0.208, at quantile 0.5. Model poverty line in West Sumatra is significantly influenced by per capita spending ), Gross Regional Domestic Product ), Human Development Index ), Open Unemployment Rate , and minimum wages .
Modeling Classification Of Stunting Toddler Height Using Bayesian Binary Quantile Regression With Penalized Lasso Hasibuan, Lilis Harianti; Yanuar, Ferra; Devianto, Dodi; Maiyastri, Maiyastri
Mathline : Jurnal Matematika dan Pendidikan Matematika Vol. 10 No. 2 (2025): Mathline : Jurnal Matematika dan Pendidikan Matematika
Publisher : Universitas Wiralodra

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31943/mathline.v10i2.928

Abstract

Stunting is a child who has a height that is shorter than the age standard. One of the main indicators of stunting is a height that is lower than the standard for toddlers. Stunting in Indonesia is of great concern due to the high prevalence of stunting. Stunting children are at risk of impaired cognitive development, which will result in the development of human resources. This study aims to develop a classification model to detect stunted toddlers based on height using the Bayesian binary quantile regression method with LASSO (Least Absolute Shrinkage and Selection Operator). This method was chosen because of its ability to handle multicollinearity and variable selection problems automatically, as well as provide better estimates on non-normally distributed data. The data used in this study includes five independent variables such as age, weight at birth, gender, how to measure height and nutritional status. The results showed that independent variables that significantly affect the height of stunting toddlers can be a concern to reduce the problem of stunting in Indonesia. The results of model show that variable age, weight at birth, and nutritional status have a significant influence to classification of stunting toddler height. Indicator of model goodness is seen from the quantile that has the smallest MSE value. The model that has the smallest MSE is in quantile 0.25 with an MSE value of 0.1622.
ANALYSIS OF COVID-19 FOMITE TRANSMISSION MODEL WITH DISINFECTANT SPRAY Sabran, La Ode; Rianjaya, Ilham Dangu; Hasibuan, Lilis Harianti; Nashar, La Ode
BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 16 No 3 (2022): BAREKENG: Journal of Mathematics and Its Applications
Publisher : PATTIMURA UNIVERSITY

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (576.652 KB) | DOI: 10.30598/barekengvol16iss3pp1021-1030

Abstract

The SARS-CoV-2 virus causes the infectious disease COVID-19. This virus can be transmitted via the fomite mode of transmission (the surface of objects contaminated with the virus). It is possible to prevent the spread of COVID-19 by spraying disinfectant on infected objects. This research aims to develop a mathematical model of COVID-19 fomite transmission with disinfectant spraying intervention. The model was analyzed by determining its stability and critical point. A Ro analysis was conducted to determine the impact of disinfectant spraying on the eradication or spread of the disease. The results demonstrated that, in the absence of disinfectant spraying, the number of infected humans increased rapidly and abruptly. Based on the findings of sensitivity analysis, it is known that spraying disinfectants is highly effective at reducing Ro, thereby reducing the number of infected humans and eradicating the disease from the population. In this study, the recommended measure to prevent the spread of COVID-19 is the periodic application of disinfectant in accordance with medical regulations.
COMPARISON OF SEASONAL TIME SERIES FORECASTING USING SARIMA AND HOLT WINTER’S EXPONENTIAL SMOOTHING (CASE STUDY: WEST SUMATRA EXPORT DATA) Hasibuan, Lilis Harianti; Musthofa, Syarto; Putri, Darvi Mailisa; Jannah, Miftahul
BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 17 No 3 (2023): BAREKENG: Journal of Mathematics and Its Applications
Publisher : PATTIMURA UNIVERSITY

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30598/barekengvol17iss3pp1773-1784

Abstract

Export is the activity of selling goods or services from one country to another. This activity usually occurs in a specific region or country. Export data is a type of data that has a seasonal pattern. This study aims to compare SARIMA and Holt Winter’s methods in forecasting export data. In this study, the SARIMA model ((1,1,1) (0,1,1))12 and Holt Winter's simulation were obtained. The data used is the export data of West Sumatra from 2016 to 2022. The best model is the one with the smallest MAPE or MAD. The SARIMA model yielded a MAPE of 0,437% and MAD of 78,821. Meanwhile, the Holt Winter's method yielded a MAPE of 0,894% and MAD of 163,320 with α=0,2, β=0,5, γ=0,1. Therefore, the SARIMA outperformed the Holt Winter’s method due to its higher accuracy. It can be concluded that the SARIMA is suitable to use as the forecasting model in this case. In this study, forecast have been made for the next 24 periods, from January 2023 to December 2024.
COMPARISON OF DOUBLE EXPONENTIAL SMOOTHING AND FUZZY TIME SERIES MARKOV CHAIN IN FORECASTING FOREIGN TOURIST ARRIVALS Putri, Darvi Mailisa; Afrimayani, Afrimayani; Hasibuan, Lilis Harianti; Ul Hasanah, Fitri Rahmah; Jannah, Miftahul
BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 18 No 3 (2024): BAREKENG: Journal of Mathematics and Its Application
Publisher : PATTIMURA UNIVERSITY

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30598/barekengvol18iss3pp1817-1828

Abstract

Foreign tourist arrivals are one of the factors that make a positive contribution to a country's economy, especially the addition of foreign exchange. This activity is important for the tourism industry and the government to make policies for progress in the tourism sector. This research aims to forecast data on foreign tourist arrivals, especially land routes. This data set, which is a monthly time series covering the period from January 2018 to October 2023, is sourced from the Central Statistics Agency (BPS). The DES technique is a method that quickly adapts to changes in data patterns and can lessen the impacts of random fluctuations, resulting in more stable estimates. Meanwhile, the FTS-MC approach can handle large data variations by utilizing fuzzy sets. Furthermore, combining fuzzy time series with Markov Chains increases forecast accuracy by taking into account state transitions and probability. The research demonstrates that the DES method produces the MAPE value of 0.108530 or 10% which is obtained from the alpha value of 0.9 and beta 0.2. The MAPE 0.108530 means that the ability of the forecasting model is classified as a good category. In the FTS-MC method, the forecast data is close to the actual data. This is indicated by the MAPE value obtained of 0.086850 or 8%, which means that the ability of the forecasting model is very good. Based on the analysis of the two methods, it is concluded that the FTS-MC method is better applied to data on land-based foreign tourist arrivals.