Claim Missing Document
Check
Articles

Found 36 Documents
Search

Penerapan Smart Grid Berbasis IoT dalam Manajemen Distribusi Energi di Lingkungan Perkotaan Sitha, Nur Syifa'u; Supiyandi, Supiyandi; Rizal, Chairul
Journal of Electrical Engineering Research Vol. 1 No. 1 (2025): January 2025
Publisher : CV. Raskha Media Group

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.64803/joeer.v1i1.4

Abstract

Perkembangan teknologi Internet of Things (IoT) memberikan peluang besar dalam peningkatan efisiensi dan keandalan sistem kelistrikan, khususnya pada lingkungan perkotaan yang memiliki tingkat konsumsi energi tinggi. Salah satu penerapannya adalah integrasi konsep smart grid berbasis IoT dalam manajemen distribusi energi. Penelitian ini membahas penerapan smart grid yang mampu memonitor, mengontrol, dan mengoptimalkan distribusi energi listrik secara real-time dengan memanfaatkan perangkat sensor, jaringan komunikasi, serta sistem pengolahan data berbasis IoT. Dengan adanya smart grid, distribusi energi di kawasan perkotaan dapat lebih adaptif terhadap perubahan beban listrik, mengurangi risiko blackout, serta meningkatkan efisiensi pemanfaatan energi. Selain itu, penggunaan IoT memungkinkan terwujudnya sistem distribusi yang lebih transparan, di mana data konsumsi energi dapat diakses dan dianalisis untuk mendukung pengambilan keputusan yang tepat. Hasil kajian menunjukkan bahwa penerapan smart grid berbasis IoT tidak hanya meningkatkan keandalan jaringan listrik, tetapi juga mendukung pengembangan kota cerdas (smart city) yang berkelanjutan. Oleh karena itu, integrasi teknologi ini menjadi langkah strategis dalam menghadapi tantangan kebutuhan energi di masa depan.
Pelatihan Coding dan Artificial Intelligence (AI) Untuk Tenaga Pendidik dan Kependidikan SMA Islam Alulum Terpadu Medan Rizal, Chairul; Linda Wahyuni; Supiyandi; Muhammad Eka; Yusuf Ramadhan Nasution
JURIBMAS : Jurnal Hasil Pengabdian Masyarakat Vol 4 No 2 (2025): Oktober 2025
Publisher : LKP KARYA PRIMA KURSUS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62712/juribmas.v4i2.693

Abstract

Perkembangan teknologi digital, khususnya programming (coding) dan kecerdasan buatan (Artificial Intelligence), menuntut generasi muda untuk memiliki literasi digital yang memadai. SMA Islam Alulum Terpadu sebagai institusi pendidikan berbasis keislaman membutuhkan penguatan kompetensi tenaga pendidik dan kependidikan agar mampu beradaptasi dengan perkembangan tersebut. Kegiatan pengabdian masyarakat ini bertujuan meningkatkan pemahaman dan keterampilan dasar tenaga pendidik dan kependidikan mengenai coding dan AI melalui pelatihan praktik langsung. Metode pelaksanaan menggunakan pendekatan participatory training yang melibatkan tenaga pendidik dan kependidikan secara aktif dalam sesi pengenalan konsep, praktik membuat program menggunakan Chat GPT dan Canva, serta pemanfaatan platform AI generatif dan AI no-code. Hasil evaluasi menunjukkan adanya peningkatan signifikan pada tingkat pemahaman tenaga pendidik dan kependidikan, yang ditunjukkan melalui perbandingan nilai pre-test dan post-test, peningkatan kreativitas dalam mini project, serta antusiasme tinggi terhadap pemanfaatan teknologi. Kegiatan ini diharapkan menjadi fondasi bagi pengembangan kurikulum ekstrakurikuler berbasis teknologi di sekolah.
Development of Multimodal Generative AI Models for Adaptive Education Personalization in the Era of Quantum Machine Learning Amin, Muhammad; Rizal, Chairul; Muslem R, Imam
Bahasa Indonesia Vol 17 No 09 (2025): Instal : Jurnal Komputer
Publisher : Cattleya Darmaya Fortuna

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.54209/jurnalinstall.v17i09.437

Abstract

The rapid advancement of Artificial Intelligence (AI) has transformed the educational landscape, making it increasingly crucial to develop adaptive and personalized learning systems. This study explores the development of a multimodal Generative AI model designed for adaptive educational personalization, enhanced by Quantum Machine Learning (QML). The model integrates various data types, including text, images, and voice, to create customized learning content tailored to individual student needs and learning styles. By combining the power of generative AI with quantum-inspired optimization techniques, this model aims to offer a more responsive and efficient learning experience. The research employs a mixed-methods approach, combining both quantitative and qualitative data to evaluate the effectiveness of the model in improving learning outcomes. The findings suggest that this hybrid approach holds significant potential for revolutionizing adaptive education, especially in resource-limited environments, and aligns with current educational trends such as the Merdeka Curriculum in Indonesia. The study concludes by highlighting the impact of quantum machine learning in enhancing personalization and overcoming the challenges posed by traditional educational models.
Aplikasi Web Komunitas Mahasiswa MBKM dengan Codeigniter 3.x dan Bootstrap 3 Harahap, Ricky Ramadhan; Supiyandi; Rizal, Chairul; Hasanuddin, Muhammad
Jurnal Komputer Teknologi Informasi Sistem Informasi (JUKTISI) Vol. 4 No. 2 (2025): September 2025
Publisher : LKP KARYA PRIMA KURSUS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62712/juktisi.v4i2.710

Abstract

Program Merdeka Belajar–Kampus Merdeka (MBKM) menuntut adanya koordinasi intensif antara berbagai pemangku kepentingan, termasuk mahasiswa, dosen pembimbing, koordinator program, dan mitra eksternal. Namun, komunikasi pelaksanaan MBKM di banyak perguruan tinggi masih memanfaatkan saluran berbasis aplikasi terpisah yang menyebabkan fragmentasi informasi, keterlambatan penyampaian pesan, serta lemahnya dokumentasi aktivitas. Penelitian ini bertujuan mengembangkan dan mengevaluasi aplikasi web komunikasi MBKM berbasis CodeIgniter 3.x dan Bootstrap 3 sebagai solusi komunikasi terpusat yang ringan, efisien, dan mudah diimplementasikan. Metode yang digunakan adalah Research and Development dengan tahapan analisis kebutuhan, perancangan sistem, pengembangan aplikasi berbasis MVC, pengujian fungsional menggunakan Black Box Testing, serta evaluasi pengguna melalui kuesioner skala Likert. Aplikasi yang dikembangkan memiliki fitur utama berupa autentikasi berbasis peran, pesan pribadi dan grup, forum diskusi, unggah-unduh dokumen, notifikasi otomatis, dan dashboard monitoring aktivitas mahasiswa. Hasil pengujian menunjukkan seluruh modul berjalan sesuai spesifikasi tanpa kegagalan fungsional. Evaluasi pengguna memperlihatkan tingkat keberterimaan tinggi pada aspek kemudahan penggunaan, manfaat sistem, dan kualitas antarmuka. Temuan penelitian membuktikan bahwa pemanfaatan framework ringan dengan desain berbasis kebutuhan spesifik MBKM mampu meningkatkan efektivitas komunikasi, konsistensi dokumentasi, serta efisiensi monitoring pelaksanaan program. Aplikasi ini dinilai layak untuk diimplementasikan sebagai media komunikasi resmi MBKM di lingkungan perguruan tinggi
Interactive Museum Innovation with Digital Technology to Enhance Education and Preserve Cultural Heritage in Indonesia Rizal, Chairul; Erni Marlina Saari
Proceedings of The International Conference on Computer Science, Engineering, Social Science, and Multi-Disciplinary Studies Vol. 1 (2025)
Publisher : CV Raskha Media Group

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.64803/cessmuds.v1.17

Abstract

Museums play an important role in preserving cultural heritage and educating the public. However, the changing behavior of the younger generation, who are more interested in digital media, has led to a further decline in visits to traditional museums. This research aims to design a digital technology-based interactive museum prototype as an effort to enhance education and cultural preservation in Indonesia. This research method uses a Research and Development (R&D) approach, which includes the stages of needs analysis, system design, prototype development, and user testing. The research instruments include the System Usability Scale (SUS) and semi-structured interviews with 30 respondents. The research findings indicate that the interactive museum prototype achieved an average SUS score of 75.6, placing it in the excellent category, and received positive feedback regarding increased visitor engagement in understanding cultural collections. This research contributes to the development of a digital museum model that meets the needs of Indonesian society.
Application of Machine Learning in Computer Hardware Failure Detection Systems Irwan, Irwan; Supiyandi, Supiyandi; Rizal, Chairul
Proceedings of The International Conference on Computer Science, Engineering, Social Science, and Multi-Disciplinary Studies Vol. 1 (2025)
Publisher : CV Raskha Media Group

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.64803/cessmuds.v1.71

Abstract

The rapid advancement of computer systems has increased the complexity and performance demands of computer hardware, leading to higher risks of hardware failure. Early detection of hardware faults is crucial to ensure system reliability, reduce downtime, and minimize maintenance costs. This proceeding discusses the application of Machine Learning (ML) techniques in computer hardware failure detection systems as an intelligent and adaptive solution. Machine Learning enables automated analysis of large volumes of hardware monitoring data, such as temperature, voltage, power consumption, and error logs, to identify patterns that indicate potential failures. Various ML approaches, including supervised learning, unsupervised learning, and anomaly detection methods, can be utilized to predict hardware malfunctions before critical failures occur. Compared to traditional rule based monitoring systems, ML based detection systems offer higher accuracy, scalability, and the ability to adapt to dynamic hardware environments. Furthermore, the integration of Machine Learning with hardware sensors and monitoring tools enhances real time fault detection and supports predictive maintenance strategies. This paper highlights the role, advantages, and challenges of applying Machine Learning in computer hardware failure detection systems, including issues related to data quality, model interpretability, and computational overhead. Overall, the application of Machine Learning provides a promising approach to improving the reliability and efficiency of modern computer hardware systems.