Claim Missing Document
Check
Articles

Found 3 Documents
Search
Journal : INFORMATIKA

EKSPLORASI KAPASITAS PENGKODEAN AMPLITUDO UNTUK MODEL QUANTUM MACHINE LEARNING Rabiatul Adawiyah; Munifah
Informatika: Jurnal Teknik Informatika dan Multimedia Vol 3 No 1 (2023): Mei : JURNAL INFORMATIKA DAN MULTIMEDIA
Publisher : LPPM Politeknik Pratama Kendal

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.51903/informatika.v3i1.232

Abstract

Komputasi kuantum melakukan perhitungan dengan menggunakan fenomena fisik dan prinsip mekanika kuantum untuk memecahkan masalah. Bentuk komputasi ini secara teoritis telah terbukti memberikan percepatan pada beberapa masalah pemrosesan modern. Perkembangan baru dalam teknologi kuantum mulai bermunculan, dan penerapan model pembelajaran untuk perangkat baru ini terus berkembang. Dengan banyak antisipasi pemanfaatan fenomena kuantum di bidang Machine Learning telah menjadi jelas. Penelitian ini mengembangkan model kerangka kerja perangkat lunak TensorFlow Quantum (TFQ) untuk tujuan machine learning. Kedua model yang dikembangkan memanfaatkan teknik pengkodean informasi dari pengkodean amplitudo untuk penyusunan keadaan dalam model pembelajaran kuantum. Tujuan dari penelitian ini adalah mengeksplorasi kapasitas pengkodean amplitudo untuk menyediakan persiapan keadaan yang diperkaya dalam metode pembelajaran dan analisis mendalam tentang properti data yang memberikan wawasan tentang data pelatihan menggunakan Variational Quantum Classifier (VQC). Munculnya metode baru ini menimbulkan pertanyaan tentang cara terbaik menggunakan alat ini, tujuannya adalah untuk memberikan beberapa penjelasan ikhtisar untuk keadaan machine learning kuantum yang dapat diterapkan mengingat kendala perangkat yang sebenarnya. Hasil penelitian ini menunjukkan ada keuntungan yang jelas untuk menggunakan pengkodean amplitudo dibandingkan metode lain seperti ditunjukkan menggunakan jaringan saraf klasik kuantum hibrid di TFQ. Selain itu, ada beberapa langkah prapemrosesan yang dapat menghasilkan lebih banyak data kaya fitur saat menggunakan VQC, pada dasarnya teorema makan siang tidak gratis berlaku untuk metode pembelajaran kuantum seperti halnya dalam teknik klasik. Informasi meskipun dikodekan dalam bentuk kuantum tidak mengubah langkah-langkah penyiapan data tetapi melibatkan cara-cara baru untuk memahami dan mengapresiasi metode-metode baru ini. Pekerjaan masa depan di bidang ini akan membutuhkan perluasan ke dalam teknik klasifikasi multikelas yang cukup dikembangkan untuk dapat diterapkan dalam pekerjaan seperti ini.
EKSPLORASI KAPASITAS PENGKODEAN AMPLITUDO UNTUK MODEL QUANTUM MACHINE LEARNING Rabiatul Adawiyah; Munifah
Informatika: Jurnal Teknik Informatika dan Multimedia Vol. 3 No. 1 (2023): Mei : JURNAL INFORMATIKA DAN MULTIMEDIA
Publisher : LPPM Politeknik Pratama Kendal

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.51903/informatika.v3i1.232

Abstract

Komputasi kuantum melakukan perhitungan dengan menggunakan fenomena fisik dan prinsip mekanika kuantum untuk memecahkan masalah. Bentuk komputasi ini secara teoritis telah terbukti memberikan percepatan pada beberapa masalah pemrosesan modern. Perkembangan baru dalam teknologi kuantum mulai bermunculan, dan penerapan model pembelajaran untuk perangkat baru ini terus berkembang. Dengan banyak antisipasi pemanfaatan fenomena kuantum di bidang Machine Learning telah menjadi jelas. Penelitian ini mengembangkan model kerangka kerja perangkat lunak TensorFlow Quantum (TFQ) untuk tujuan machine learning. Kedua model yang dikembangkan memanfaatkan teknik pengkodean informasi dari pengkodean amplitudo untuk penyusunan keadaan dalam model pembelajaran kuantum. Tujuan dari penelitian ini adalah mengeksplorasi kapasitas pengkodean amplitudo untuk menyediakan persiapan keadaan yang diperkaya dalam metode pembelajaran dan analisis mendalam tentang properti data yang memberikan wawasan tentang data pelatihan menggunakan Variational Quantum Classifier (VQC). Munculnya metode baru ini menimbulkan pertanyaan tentang cara terbaik menggunakan alat ini, tujuannya adalah untuk memberikan beberapa penjelasan ikhtisar untuk keadaan machine learning kuantum yang dapat diterapkan mengingat kendala perangkat yang sebenarnya. Hasil penelitian ini menunjukkan ada keuntungan yang jelas untuk menggunakan pengkodean amplitudo dibandingkan metode lain seperti ditunjukkan menggunakan jaringan saraf klasik kuantum hibrid di TFQ. Selain itu, ada beberapa langkah prapemrosesan yang dapat menghasilkan lebih banyak data kaya fitur saat menggunakan VQC, pada dasarnya teorema makan siang tidak gratis berlaku untuk metode pembelajaran kuantum seperti halnya dalam teknik klasik. Informasi meskipun dikodekan dalam bentuk kuantum tidak mengubah langkah-langkah penyiapan data tetapi melibatkan cara-cara baru untuk memahami dan mengapresiasi metode-metode baru ini. Pekerjaan masa depan di bidang ini akan membutuhkan perluasan ke dalam teknik klasifikasi multikelas yang cukup dikembangkan untuk dapat diterapkan dalam pekerjaan seperti ini.
SISTEM INFORMASI KEUANGAN BERBASIS WEB DI KANTOR NOTARIS DAN PPAT SULISTIYANI,S.H.,M.Kn Anita Nur Setiyani; Ahmad Ashifuddin Aqham; Munifah; Edy Siswanto
Informatika: Jurnal Teknik Informatika dan Multimedia Vol. 5 No. 2 (2025): Oktober : JURNAL TEKNIK INFORMATIKA DAN MULTIMEDIA
Publisher : LPPM Politeknik Pratama Kendal

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.51903/informatika.v5i2.1415

Abstract

An The development of information significantly impacts the legal field, particularly in the administration and financial management of the Notary and PPAT Office of Sulistiyani, S.H., M.Kn. The conventional methods used often lead to errors and reporting delays. This research aims to develop a computer-based financial information system using the Research and Development (R&D) method. The system is designed to improve efficiency, accuracy, and data security. The results show that the developed system successfully minimizes recording errors and accelerates the financial reporting process. In conclusion, the implementation of this computer-based information system is effective and efficient in supporting the notary office's financial management.