Claim Missing Document
Check
Articles

RUANG BANACH PADA RUANG BARISAN l1, lp DAN l~ Alwi, Wahidah
Teknosains Vol 8, No 1 (2014): JANUARI
Publisher : Fakultas Sains dan Teknologi UIN ALauddin

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

The main object of the vectors are the vectors can be added together and generate a vector, and produces a number is multiplied by another vector. Any set of objects with properties like this are called "vector space". Mathematical structure to be defined is a Banach space. Clearly defined Banach space vector space of real / complex normed and complete (with respect to the norm)
HILBERT SPACE IN SEQUENCE SPACE l2 Alwi, Wahidah
Matematika dan Statistika serta Aplikasinya Vol 2, No 1 (2014)
Publisher : Jurusan Matematika FST-UIN Alauddi Makassar

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

The main object of the vectors are the vectors can be added together and generate a vector, and produces a number is multiplied by another vector. Any set of objects with properties like this are called "vector space". In this study aims to assess pre-Hilbert space and Hilbert space in a sequence space 2  . Based on the purpose of the study, it was found that a vector space form a pre Hilbertspace when equipped with the inner product space. While a pre-Hilbert space is complete if every Cauchy sequence (xn) in X, convergent in X called a Hilbert space.
HIMPUNAN BILANGAN KOMPLEKS YANG MEMBENTUK GRUP Alwi, Wahidah; Abidin, Wahyuni; Wahdaniyah, Wahdaniyah
Matematika dan Statistika serta Aplikasinya Vol 2, No 2 (2014)
Publisher : Jurusan Matematika FST-UIN Alauddi Makassar

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Bilangan riil banyak digunakan dalam menyelesaikan pembuktian sifatsifat grup. Kemudian sifat-sifat grup tersebut akan dikaji dengan menggunakan himpunan bilangan kompleks. Tujuan dari penelitian ini adalah untuk mengetahui himpunan bilangan kompleks yang dapat membentuk grup atau bukan grup. Jenis penelitian yang digunakan dalam penelitian ini adalah penelitian murni (kajian teori). Hasil penelitian yang diperoleh adalah himpunan bilangan kompleks yang dapat membentuk grup dapat dilihat pada bentuk atau operasi tertentu yaitu penjumlahan dan perkalian bilangan kompleks dapat membentuk grup
ESTIMATOR KERNEL PADA REGRESI NONPARAMETRIK MENGGUNAKAN PENDEKATAN FUNGSI KERNEL GAUSSIAN Alwi, Wahidah; Sauddin, Adnan; Nirmala, Nirmala
Teknosains Vol 13 No 2 (2019): JULI
Publisher : Fakultas Sains dan Teknologi Universitas Islam Negeri Alauddin Makassar

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24252/teknosains.v13i2.9642

Abstract

The study by using the data to model a state (variable) in the statistical analysis usually requires certain assumptions in order to use the analysis results in accordance with the actual situation. This study uses a nonparametric procedure to estimate a function in which the function does not lead to a certain model of a particular function. The main problem of regression analysis is to determine the shape estimation. One approach that can be used to determine  is a kernel estimator with a Gaussian kernel approach. The data used is data that the percentage of women aged 15-49 who have been married according to the last birth attendants in South Sulawesi with the gynecologist predictor variables (), general practitioners (), midwives (), and the response variable () the number of women who have been married according to the last birth attendants. Methods GCV (Generalized Cross Validation) is used to obtain optimal bandwidth that is at ,  and = 25 with value GCV is . The optimum value is the maximum value of the percentage of women aged  who have been married according to the last birth attendants in South Sulawesi.
TRANFORMASI MATRIKS PADA RUANG BARISAN KONVERGEN Wahidah Alwi
Teknosains Vol 7 No 1 (2013): JANUARI
Publisher : Fakultas Sains dan Teknologi Universitas Islam Negeri Alauddin Makassar

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24252/teknosains.v7i1.76

Abstract

The calculus have introduce the real functions namely for all functions to map real number to the real number. Now, the explanation it not only to real number but the mapping of norm space that is a linier transformations, namely the mathematical sentences with the mapping of a vector space to the others. The purpose of this research are how to know the requirements a infinite matrices in order to be a like as transformations in the sequences space is the sequences space c0 to c0. Matrices An x m can be looked as linier transformation of Rm to Rn. So the functions can map to point (x1, x2, x3, …, xm) at Rm to a point (y1, y2, y3,…, yn) at Rn. The similarly, a matrices can be looked as linier transformation of the sequences space to the others provided that line and coloum matrices that infinite elements. In this case, matrices map the sequences (x1, x2, x3, …) to the sequences (y1, y2, y3,…). This matrices is a infinite matrices. There for, the infinite matricres must fulfill several requirements in order be linier transformations of the sequences space to the certain sequences space, that is the infinite matrices A = (ank)n≥1 (k certain) with a finite suprimum can be linier transformation of the sequences c0 to c0.
RUANG BANACH PADA RUANG BARISAN 1  , p  DAN  Wahidah Alwi
Teknosains Vol 8 No 1 (2014): JANUARI
Publisher : Fakultas Sains dan Teknologi Universitas Islam Negeri Alauddin Makassar

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24252/teknosains.v8i1.1840

Abstract

The main object of the vectors are the vectors can be addedtogether and generate a vector, and produces a number is multipliedby another vector. Any set of objects with properties like this arecalled "vector space". Mathematical structure to be defined is aBanach space. Clearly defined Banach space vector space of real /complex normed and complete (with respect to the norm). Banachspace in this study examined the sequence space 1  , p  and   .Based on the purpose of this study is to assess the Banach spacewithin a sequence space 1  , p  and   , it is obtained that asequence space 1  , p  and   form Banach space if it meets therequirements of that sequence space 1  , p  and   is a vectorspace, normed sequence space, and normed sequence space withcomplete.
PENGELOMPOKAN KABUPATEN/KOTA DI SULAWESI SELATAN BERDASARKAN INDIKATOR KESEHATAN DENGAN MENGGUNAKAN METODE AVERAGE LINKAGE Wahidah Alwi; Adnan Sauddin; Vivi Feromida
Teknosains Vol 14 No 1 (2020): JANUARI
Publisher : Fakultas Sains dan Teknologi Universitas Islam Negeri Alauddin Makassar

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24252/teknosains.v14i1.12940

Abstract

Penelitian ini membahas tentang pengelompokan kabupaten/kota di Sulawesi Selatan berdasarkan indikator kesehatan dengan menggunakan metode Average Linkage. Kondisi kesehatan di Provinsi Sulawesi Selatan saat ini, masih terbatasnya jangkauan dan akses pelayanan kesehatan. Tujuan dari penelitian ini adalah untuk mengetahui daerah yang memiliki kemiripan karakteristik berdasarkan indikator kesehatan di Sulawesi Selatan. Terdapat beberapa metode yang dapat digunakan dalam pengelompokan, salah satunya analisis cluster Average Linkage. Dimana analisis cluster adalah salah satu teknik multivariat yang tujuan utamanya mengelompokkan objek berdasarkan karakteristik yang mereka miliki. Dari hasil penelitian, diperoleh bahwa daerah yang memiliki kemiripan karakteristik dari segi kesehatan di Provinsi Sulawesi Selatan berdasarkan variabel yang digunakan dibentuk 4 cluster. Kabupaten/Kota pada cluster 4 yaitu Kota Palopo, cluster 3 terdiri dari 2 Kabupaten/Kota yaitu Kabupaten Tana Toraja dan Toraja Utara, dan cluster 2 hanya terdiri dari 1 Kabupaten/Kota yaitu Kabupaten Bulukumba. Adapun cluster 1 terdiri dari 20 Kabupaten/Kota yaitu semua Kabupaten/Kota kecuali Kabupaten Bulukumba, Tana Toraja, Toraja Utara dan Kota Palopo.
PEMODELAN JUMLAH KEMATIAN NEONATAL DI PROVINSI SULAWESI SELATAN MENGGUNAKAN REGRESI POISSON INVERSE GAUSSIAN Irwan Irwan; Wahidah Alwi; Nurhasanah Nurhasanah
Teknosains Vol 15 No 2 (2021): Mei-Agustus
Publisher : Fakultas Sains dan Teknologi Universitas Islam Negeri Alauddin Makassar

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24252/teknosains.v15i2.17450

Abstract

Kematian neonatus adalah kematian bayi yang lahir hidup sampai dengan 28 hari sejak lahir. Angka kematian neonatal di Provinsi Sulawesi Selatan pada tahun 2018 masih cukup tinggi yaitu sebanyak 799 kasus. Oleh karena itu, diperlukan suatu analisis untuk mengetahui faktor-faktor apa saja yang berpengaruh signifikan terhadap jumlah kematian neonatus. Dalam penelitian ini, jumlah kematian neonatus dapat dimodelkan dengan menggunakan analisis regresi Poisson. Namun pada model ini terdapat masalah overdispersi sehingga analisis dilanjutkan dengan menggunakan analisis regresi Gaussian inverse Poisson sehingga diperoleh hasil hanya satu variabel yang berpengaruh signifikan terhadap jumlah kematian neonatus yaitu variabel persalinan ditolong oleh tenaga kesehatan (x〗_7)). Model regresi Gaussian inverse Poisson yang diperoleh untuk jumlah kematian neonatus di Provinsi Sulawesi Selatan tahun 2018 adalah μ̂=exp(4,97785−0,11603x7).
Forcasting Stock Price PT. Indonesian Telecomunication with ARCH-GARCH Model Wahidah Alwi; Aprilia Pratiwi S; Ilham Syata
Jurnal Varian Vol 5 No 2 (2022)
Publisher : Universitas Bumigora

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30812/varian.v5i2.1543

Abstract

This research discusses the modeling of time series using R software, focusing on forecasting the stock price of PT. Indonesian telecommunications with ARCH-GARCH model. The data used daily closing data on stock prices from January 6, 2020, to January 6, 2021 was obtained from the website www.finance.yahoo.com. The goal is to find out the best model arch-garch on PT. Indonesian telecommunications to find out the results of stock price forecasting the next day using the ARCH-GARCH model. The best model was ARIMA (2,1,3). The results of the ARCH-LM test showed the data contained heteroskedasticity effects or ARCH elements. The research models proposed in this study are ARCH (1) and ARCH-GARCH (1,1). The smallest AIC and BIC values of these two models are ARCH-GARCH (1,1) which is the best model for forecasting the stock price of PT. Indonesian telecommunications for the next 10 days. The study attempts to conduct stock price forecasting with the ARCH-GARCH model. The result of the forecasting of the share price of PT. Indonesian telecommunications from January 07, 2021 to January 20, 2021 respectively except for holidays is IDR 3374.884, IDR 3379.617,IDR 3378.305, IDR 3376.610, IDR 3380.050, IDR 3376.372, IDR 3379.071, IDR 3377.964, IDR 3377.515, IDR 3379.002. Forecasting results are close to factual data for forecasting the next 10 days so that they can be taken into consideration in investing by investors.
Comparison of Fuzzy Time Series Methods and Autoregressive Integrated Moving Average (ARIMA) for Inflation Data Asyifah Qalbi; Khalilah Nurfadilah; Wahidah Alwi
Eigen Mathematics Journal Vol. 4 No. 2 Desember 2021
Publisher : University of Mataram

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29303/emj.v4i2.122

Abstract

This study compares the Fuzzy Time Series (FTS) method with the Autoregressive Integrated Moving Average (ARIMA) method on time series data. These two methods are often used in predicting future data. Forecasting or time-series data analysis is used to analyze data in the form of time series. In this study, Indonesian inflation data was used to be analyzed in comparing the FTS and ARIMA methods. Inflation is one of the economic indicators used to measure the success of a country's economy. If the inflation rate is low and stable, it will stimulate economic growth. This inflation value is calculated every month where the value can decrease and increase from one period to another. Comparison of the FTS and ARIMA methods is seen in the error value generated by the two methods. A method can be better than other methods if the value of the resulting forecast error is smaller. In this study, Mean Squared Error (MSE) and Mean Absolute Percentage Error (MAPE) were used to see the magnitude of the error value of the two methods on the fives data testing used. The results obtained in this study are the results of Indonesia's inflation forecast for the period January to May 2021 using the FTS method, respectively, at 0.57%, 0.375%, 0.2%, 0.2%, and 0.1125%, while the forecast results using the ARIMA method, respectively. Of 0.3715848%, 0.2362817%, 0.1508295%, 0.1731906%, and 0.2432851% and the results of calculating the size of error using MSE and MAPE indicate that the ARIMA method with the model ARIMA(3,0,0) is better at predicting inflation data in Indonesia with a value of MSE of 0.009 and MAPE of 64.987% compared to the FTS method resulted in MSE values of 0.047 and MAPE of 132.548%.