Claim Missing Document
Check
Articles

Found 3 Documents
Search
Journal : Systemic: Information System and Informatics Journal

Klasifikasi Berita Berbahasa Indonesia Mengggunakan Seleksi Fitur Dua Tahap Dan Naïve Bayes Fauzi, M Ali; Gosario, Sony; Arifin, Agus Zainal
Systemic: Information System and Informatics Journal Vol 3 No 2 (2017): Desember
Publisher : Program Studi Sistem Informasi Fakultas Sains dan Teknologi, UIN Sunan Ampel Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29080/systemic.v3i2.240

Abstract

Jumlah dokumen digital telah meningkat secara pesat, sehingga klasifikasi dokumen secara otomatis menjadi sangat penting. Pemilihan fitur diperlukan dalam klasifikasi dokumen otomatis. Salah satu metode seleksi fitur yang terbukti handal adalah Maximal Marginal Relevance for Feature Selection (MMR-FS), namun metode ini memiliki kompleksitas yang tinggi. Dalam penelitian ini, diusulkan sebuah metode baru dalam pemilihan fitur untuk klasifikasi dokumen. Metode yang diusulkan terdiri dari dua tahap, yang pertama adalah Information Gain dan yang kedua adalah MMR-FS . Pada proses klasifikasinya digunakan metode Naïve Bayes. Dalam percobaan yang dilakukan, metode yang diusulkan bisa mencapai akurasi 86%. Metode baru ini dapat menurunkan kompleksitas MMR-FS namun tetap mempertahankan keakuratannya.
Klasifikasi Teks Bahasa Indonesia Pada Dokumen Pengaduan Sambat Online Menggunakan Metode K-Nearest Neighbors Dan Chi-square Claudio Fresta Suharno; M. Ali Fauzi; Rizal Setya Perdana
Systemic: Information System and Informatics Journal Vol. 3 No. 1 (2017): Agustus
Publisher : Program Studi Sistem Informasi Fakultas Sains dan Teknologi, UIN Sunan Ampel Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1093.934 KB) | DOI: 10.29080/systemic.v3i1.191

Abstract

K-Nearest Neighbors (K-NN) merupakan metode klasifikasi yang mudah untuk dipahami. Akan tetapi metode tersebut memiliki beberapa kekurangan, salah satunya dalam aspek komputasi perhitungan yang besar. Oleh karena itu, seleksi fitur digunakan sebagai salah satu cara untuk mengurangi besarnya komputasi adalah dengan mengurangi jumlah fitur yang tidak relevan dalam klasifikasi teks. Metode seleksi fitur yang digunakan adalah menggunakan metode Chi-Square untuk menghitung tingkat dependensi fitur. Proses yang dilakukan adalah mengumpulkan dokumen latih dan dokumen uji, melakukan tahap preprocessing dan seleksi fitur, kemudian dilakukan klasifikasi, dan pada tahap akhir dilakukan pengujian dan analisis terhadap hasil klasifikasi oleh sistem terkait nilai precision, recall, dan F-Measure. Dari penelitian ini dihasilkan bahwa seleksi fitur dapat meningkatkan nilai F-Measure dalam klasifikasi teks berbahasa Indonesia pada dokumen pengaduan SAMBAT Online dengan menggunakan metode klasifikasi K-Nearest Neighbors
Analisis Sentimen Pada Ulasan Aplikasi Mobile Menggunakan Naive Bayes dan Normalisasi Kata Berbasis Levenshtein Distance (Studi Kasus Aplikasi BCA Mobile) Ferly Gunawan; M. Ali Fauzi; Putra Pandu Adikara
Systemic: Information System and Informatics Journal Vol. 3 No. 2 (2017): Desember
Publisher : Program Studi Sistem Informasi Fakultas Sains dan Teknologi, UIN Sunan Ampel Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (956.948 KB) | DOI: 10.29080/systemic.v3i2.234

Abstract

Perkembangan aplikasi mobile yang pesat membuat banyak aplikasi diciptakan dengan berbagai kegunaan untuk memenuhi kebutuhan pengguna. Setiap aplikasi memungkinkan pengguna untuk memberi ulasan tentang aplikasi tersebut. Tujuan dari ulasan adalah untuk mengevaluasi dan meningkatkan kualitas produk ke depannya. Untuk mengetahui hal tersebut, analisis sentimen dapat digunakan untuk mengklasifikasikan ulasan ke dalam sentimen positif atau negatif. Pada ulasan aplikasi biasanya terdapat salah eja sehingga sulit dipahami. Kata yang mengalami salah eja perlu dilakukan normalisasi kata untuk diubah menjadi kata standar. Karena itu, normalisasi kata dibutuhkan untuk menyelesaikan masalah salah eja. Penelitian ini menggunakan normalisasi kata berbasis Levenshtein distance. Berdasarkan pengujian, nilai akurasi tertinggi terdapat pada perbandingan data latih 70% dan data uji 30%. Hasil akurasi tertinggi dari pengujian menggunakan nilai edit <=2 adalah 100%, nilai edit tertinggi kedua didapat pada nilai edit <=1 dengan akurasi 96,4%, sedangkan nilai edit dengan akurasi terendah diperoleh pada nilai edit <=4 dan <=5 dengan akurasi 66,6%. Hasil dari pengujian Naive Bayes-Levenshtein Distance memiliki nilai akurasi tertinggi yaitu 96,9% dibandingkan dengan pengujian Naive Bayes tanpa Levenshtein Distance dengan nilai akurasi 94,4%.
Co-Authors Adi Sukarno Rachman Adinugroho, Sigit Aditya Kresna Bayu Arda Putra Agnes Rossi Trisna Lestari Agung Setiyoaji Agus Wahyu Widodo Agus Zainal Arifin Ahmad Galang Satria Ahmad Wildan Attabi&#039; Akbar, Aldi Fandiya Alvandi Fadhil Sabily Amalia Kusuma Akaresti Andika Indra Kusuma Andro Subagio Anita Sumiati Annam Rosyadi Annisya Aprilia Prasanti Annisya Aprilia Prasanti Anny Yuniarti ari kusyanti Bayu Rahayudi Billy Sabilal Budi Darma Setiawan Budi Kurniawan Chusnah Puteri Damayanti Claudio Fresta Suharno Claudio Fresta Suharno Dahnial Syauqy Desfianti, Ruri Dhimas Anjar Prabowo Dian Eka Ratnawati Dimas Joko Haryanto Dwi Damara Kartikasari dwi taufik hidayat Edy Santoso Eka Dewi Lukmana Sari Elisa Julie Irianti Siahaan Eti Setiawati Fachrul Rozy Saputra Rangkuti Fakhruddin Farid Irfani Fathor Rosi Ferly Gunawan Ferly Gunawan Figgy Rosaliana Fitra Abdurrachman Bachtiar Galih Nuring Bagaskoro Gosario, Sony Hadiyan Hadiyan Hasbi Razzak Hidayat, Hasannudin Hilmy Khairi Idris Hurriyatul Fitriyah I Wayan Sudira Imam Cholissodin Imam Cholissodin Indriati Indriati Irma Pujadayanti Irwin Deriyan Ferdiansyah Ismiarta Aknuranda Isnan . Joda Pahlawan Romadhona Tanjung Komang Candra Brata Lailil Muflikhah Laksono Trisnantoro Liana Shinta Dewi Liana Shinta Dewi Lita Handayani Tampubolon M Yusron Syauqi Dirgantara M. Rizzo Irfan M. Rizzo Irfan Mahdarani Dwi Laxmi Mahendra Data Malahayati, Salsabila Nur Maulana, Muhammad Afif Moch. Yugas Ardiansyah Moh Fadel Asikin Moh Iqbal Yusron Muhammad Fhadli Muhammad Hakiem Muhammad Khaerul Ardi Muhammad Khatib Barokah Muhammad Mishbahul Munir Muhammad Sholeh Hudin Muhammad Tanzil Furqon Nanda Firizki Ananta Ni Made Gita Dwi Purnamasari Ni Made Gita Dwi Purnamasari Nining Nahdiah Satriani Nur Hijriani Ayuning Sari Nurul Dyah Mentari Nurul Dyah Mentari Nurul Hidayat Prananda Antinasari Primantara Hari Trisnawan Putra Pandu Adikara Qiindil, Audry Rachmad Indrianto Rahmat Yani Rakhman Halim Satrio Randy Cahya Wihandika Ratih Diah Puspitasari Rekyan Regasari Mardi Putri, Rekyan Regasari Mardi Resti Febriana Ria Ine Pristiyanti Rika Raudhotul Rizqiyah Rizal Maulana Rizal Maulana, Rizal Rizal Setya Perdana Ro&#039;i Fahreza Nur Firmansyah Robertus Santoso Aji Putro Rodhiya, Hanif Robby Rosy Indah Permatasari Safier Yusuf Saiful Bahri Shandy, Ryo Shima Fanissa Silalahi, Gifo Armando Silvia Aprilla Sonny Christiano Gosaria Sudin, Mahmudin Suryani Agustin Sutrisno Sutrisno Thio Marta Elisa Yuridis Butar Butar Tibyani Tibyani Tibyani Tibyani Tri Afirianto Tri Afirianto Ulfa Lina Wulandari Umi Rofiqoh Ummah Karimah, Ummah Uswatun Hasanah Utaminingrum, Fitri Veronica Kristina Br Simamora Vina Adelina Wahyuni Lubis Widhi Yahya Wildan Aulia Rachman Winda Estu Nurjanah Winda Fitri Astiti Yessivha Imanuela Claudy Yuita Arum Sari Yuita Arum Sari Zafran, Muhammad Abyan Zubaidah Al Ubaidah Sakti