Claim Missing Document
Check
Articles

Found 40 Documents
Search

The Impactness of SMOTE as Imbalance Class Handling for Myocardial Infarction Complication Classification using Machine Learning Approach with Data Imputation and Hyperparameter Ahmad Tajali; Saragih, Triando Hamonangan; Mazdadi, Muhammad Itqan; Budiman, Irwan; Farmadi, Andi
Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol. 6 No. 4 (2024): November
Publisher : Jurusan Teknik Elektromedik, Politeknik Kesehatan Kemenkes Surabaya, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/ijeeemi.v6i4.13

Abstract

Myocardial Infarction (MI) is a critical medical emergency characterized by the sudden blockage of blood flow to the heart muscle, often resulting from a blood clot in a coronary artery that has been narrowed by atherosclerotic plaque buildup. This condition demands immediate attention, as prolonged disruption of blood supply can cause irreversible damage to the heart muscle. Diagnosing MI typically involves a combination of methods, including a physical examination, electrocardiogram (ECG) analysis, blood tests to measure heart-specific enzymes, and imaging techniques such as coronary angiography. Early prediction of potential MI complications is crucial to prevent severe outcomes and improve patient prognosis. This study focuses on the early prediction of MI complications through the application of machine learning classification methods. We employed algorithms such as Support Vector Machine (SVM), Random Forest, and XGBoost to analyze patient medical records and accurately predict these complications. The selection of Support Vector Machine (SVM), Random Forest, and XGBoost in this study is driven by their proven effectiveness in handling complex classification problems. To manage incomplete datasets and preserve valuable information, data imputation techniques like K-Nearest Neighbors (KNN) Imputation, Iterative Imputation, and MissForest were applied.  KNN, Iterative, and MissForest imputations were chosen to handle missing data due to their effectiveness in preserving data integrity, which is crucial for accurate predictions in myocardial infarction complication studies. Additionally, Bayesian Optimization was utilized to fine-tune the hyperparameters of the models, thereby enhancing their predictive accuracy. The Iterative Imputation method yielded the best performance, particularly in SVM and XGBoost algorithms. SVM achieved 100% accuracy, precision, sensitivity, F1 score, and Area Under the Curve (AUC), while XGBoost attained 99.4% accuracy, 100% precision, 79.6% sensitivity, an F1 score of 88.7%, and an AUC of 0.898. While XGBoost and MissForest proved to be the most successful pairing, the overall effectiveness of the models suggests that Iterative Imputation and Random Forest also have potential under certain conditions.
Analisis Perbandingan Metode Harmonic Mean dan Local Mean Vector Dalam Penyeleksian Tetangga Pada Algoritma KNN Said, Muhammad Al Ichsan Nur Rizqi; Faisal, Mohammad Reza; Kartini, Dwi; Budiman, Irwan; Saragih, Triando Hamonangan
Jurnal Sains dan Informatika Vol. 9 No. 2 (2023): Jurnal Sains dan Informatika
Publisher : Teknik Informatika, Politeknik Negeri Tanah Laut

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.34128/jsi.v9i2.376

Abstract

Algoritma K Nearest Neighbour (KNN) merupakan salah satu algoritma klasifikasi yang telah digunakan pada banyak penelitian, namun KNN memiliki beberapa kekurangan diantaranya adalah pada pemilihan jumlah tetangga terdekat. Jika jumlah tetangga terdekat terlalu kecil maka akan sensitif terhadap derau (noise) dan jika jumlah tetangga terdekat terlalu besar kemungkinan ada tetangga outlier dari kelas lain. Majority Voting juga merupakan metode yang sederhana dan ini bisa jadi masalah jika jarak bervariasi. Salah satu solusi untuk masalah outlier adalah menggunakan Local Mean Vector dengan menambahkan Harmonic Mean untuk membantunya. Penelitian ini bertujuan untuk mengetahui perbandingan kinerja teknik penyeleksian tetangga terakhir yang didapatkan menggunakan Local Mean Vector dan Harmonic Mean. Dari Hasil dari penelitian ini menunjukkan bahwa teknik penyeleksian tetanggal berbasis Local Mean Vector dan Harmonic Mean memberikan akurasi lebih baik yaitu sebesar 0,78 dibandingkan dengan teknik Majority Voting dengan akurasi sebesar 0.75.
Prediksi Churn Pelanggan Telekomunikasi dengan Optimalisasi Seleksi Fitur dan Tuning Hyperparameter pada Algoritma Klasifikasi C4.5 Antoh, Soterio; Herteno, Rudy; Budiman, Irwan; Kartini, Dwi; Mazdadi, Muhammad Itqan
Jurnal Sistem Informasi Bisnis Vol 15, No 1 (2025): Volume 15 Number 1 Year 2025
Publisher : Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/vol15iss1pp60-67

Abstract

In the telecommunications industry, predicting customer churn is crucial for maintaining business sustainability. High churn rates can negatively impact profitability, necessitating effective retention strategies. This research aims to enhance the accuracy of telecommunications customer churn prediction by optimizing the C4.5 classification algorithm through feature selection and hyperparameter tuning. The methods used include Information Gain for feature selection and hyperparameter tuning with Random Search and Grid Search. This study utilizes the Telco Customer Churn dataset from Kaggle, split into an 80:20 ratio for training and testing data. Six approaches are applied: (1) the basic C4.5 algorithm, (2) C4.5 with Information Gain, (3) C4.5 with Random Search, (4) C4.5 with Grid Search, (5) C4.5 with a combination of Information Gain and Random Search, and (6) C4.5 with a combination of Information Gain and Grid Search. The results indicate that the C4.5 algorithm alone achieves an accuracy of 74.09%, while applying Information Gain increases accuracy to 78.42%. Hyperparameter tuning with Random Search achieves the highest accuracy of 80.05%, whereas Grid Search reaches 77.71%. Combining Information Gain with Random Search results in an accuracy of 78.99%, while combining Information Gain with Grid Search yields an accuracy of 78.85%. These findings suggest that hyperparameter tuning using Random Search significantly improves accuracy compared to other methods, while Information Gain feature selection does not have a significant impact on performance in this context.
Analisis Penyebab Produk Defect Selama Penyimpanan pada Perusahaan Manufaktur Plastik dengan Diagram Pareto dan Root Cause Analysis Sinaga, Tuti Sarma; Budiman, Irwan; Kartika, Tengku Heny
Jurnal Teknik Industri Terintegrasi (JUTIN) Vol. 8 No. 2 (2025): April
Publisher : LPPM Universitas Pahlawan Tuanku Tambusai

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31004/jutin.v8i2.41632

Abstract

This research was conducted in a factory that produces polypropylene, polyethylene, and high density plastics located in North Sumatra Province, Indonesia. Based on the characteristics of its products, the company implements a make to stock system. However, the products experience quite high damage reaching 20% ​​of its total production. Therefore, this study will analyze the causes of defective products during storage in a plastic factory. In this study, historical data of damage that occurred and Pareto Diagram were used to obtain the main causes and analyze them so that defective products when stored in the warehouse can be reduced. Based on the Pareto Diagram, it was found that sticky and discolored plastics dominate the number of defective products. To prevent this, it is necessary to manage the temperature of the storage room, provide a good understanding for operators and inspect materials according to standards
Implementation of PPCA Imputation, SMOTE-N Class Balancing in Hepatitis Classification Using Naïve Bayes Fathmah, Siti; Kartini, Dwi; Abadi, Friska; Budiman, Irwan; Mazdadi, Muhammad Itqan
JUITA: Jurnal Informatika JUITA Vol. 12 No. 2, November 2024
Publisher : Department of Informatics Engineering, Universitas Muhammadiyah Purwokerto

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30595/juita.v12i2.21528

Abstract

The availability of complete data in research is crucial, especially in the initial stages. The Hepatitis data used in this study encountered issues such as missing data and class imbalance, which hindered its optimal utilization. The method employed to address missing data was the PPCA imputation method. After filling in the missing data, the data was balanced using the SMOTE-N class balancing method and classified using Gaussian Naïve Bayes. The aim of this research was to compare the classification evaluation of hepatitis disease using Naive Bayes with the PPCA imputation approach and SMOTE-N class balancing. The best results from each scenario yielded an AUC value of 0.833 in the first scenario with an 80:20 data split for training and testing, and 0.875 in the second scenario with a 90:10 data split. The highest AUC value was obtained in the application of PPCA imputation with SMOTE-N class balancing using Naive Bayes classification. This demonstrates that the implementation of PPCA imputation with SMOTE-N class balancing has a better impact on the performance of Naïve Bayes classification.
Image Classification of Traditional Indonesian Cakes Using Convolutional Neural Network (CNN) Azizah, Azkiya Nur; Budiman, Irwan; Indriani, Fatma; Faisal, M. Reza; Herteno, Rudy
Computer Engineering and Applications Journal (ComEngApp) Vol. 13 No. 2 (2024)
Publisher : Universitas Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Indonesia is one of the countries famous for its traditional culinary. Traditional cakes in Indonesia are traditional snacks typical of the archipelago's culture which have a variety of textures, shapes, colors that vary and some are similar so that there are still many people who do not know the name of the cake from the many types of traditional Indonesian cakes. The problem can be solved by creating a traditional cake image recognition system that can be programmed and trained to classify various types of traditional Indonesian cakes. The Convolutional Neural Network method with the AlexNet architecture model is used in this research to predict various kinds of traditional Indonesian cakes. The dataset used in this research is 1846 datasets with 8 classes of cake images. This study trained the AlexNet model with several optimizers, namely, Adam optimizer, SGD, and RMSprop. The best parameters from the model testing results are at batchsize 16, epoch 50, learning rate 0.01 for SGD optimizer and learning rate 0.001 for Adam and RMSprop optimizers. Each optimizer tested produces different accuracy, precision, recall, and f1_score values. The highest test results that have been carried out on the image dataset of typical Indonesian traditional cakes are obtained by the Adam optimizer with an accuracy value of 79%.
Implementation of Chi-Square Feature Selection for Parkinson’s Disease Classification Using LightGBM Ahdyani, Annisa Salsabila; Budiman, Irwan; Kartini, Dwi; Farmadi, Andi; Mazdadi, Muhammad Itqan
IJCCS (Indonesian Journal of Computing and Cybernetics Systems) Vol 19, No 3 (2025): July
Publisher : IndoCEISS in colaboration with Universitas Gadjah Mada, Indonesia.

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijccs.107881

Abstract

Penyakit Parkinson merupakan penyakit yang disebabkan oleh kerusakan sel saraf otak dan termasuk penyakit yang jumlah kasusnya meningkat pesat di dunia. Salah satu cara yang dapat dilakukan untuk mencegah meningkatnya kasus penyakit Parkinson adalah dengan melakukan diagnosis melalui metode klasifikasi dengan pendekatan pembelajaran algoritmik. Penelitian ini mengimplementasikan teknik Chi-Square untuk pendekatan pemilihan fitur yang relevan dengan algoritma Light Gradient Boosting Machine (LightGBM) dalam klasifikasi penyakit Parkinson. Pemilihan fitur Chi-Square bertujuan untuk mengurangi fitur yang kurang relevan sehingga dapat meningkatkan hasil kinerja model. Selain itu, metode SMOTE diterapkan untuk menangani ketidakseimbangan data dan penyetelan hiperparameter guna menentukan kombinasi parameter yang optimal. Pengujian dilakukan terhadap sepuluh variasi jumlah fitur, dengan hasil terbaik diperoleh dengan menggunakan 200 fitur yang menghasilkan akurasi sebesar 96,05%. Dengan menggunakan metode Chi-Square, kinerja model LightGBM meningkat dibandingkan dengan kinerja tanpa pemilihan fitur. Penerapan kombinasi metode ini dapat meningkatkan kinerja model klasifikasi secara signifikan dan berpotensi untuk diterapkan dalam sistem pendukung diagnosis penyakit Parkinson.
Multimodal Biometric Recognition Based on Fusion of Electrocardiogram and Fingerprint Using CNN, LSTM, CNN-LSTM, and DNN Models Agustina, Winda; Nugrahadi, Dodon Turianto; Faisal, Mohammad Reza; Saragih, Triando Hamonangan; Farmadi, Andi; Budiman, Irwan; Parenreng, Jumadi Mabe; Alkaff, Muhammad
Jurnal Teknik Informatika (Jutif) Vol. 6 No. 4 (2025): JUTIF Volume 6, Number 4, Agustus 2025
Publisher : Informatika, Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52436/1.jutif.2025.6.4.5098

Abstract

Biometric authentication offers a promising solution for enhancing the security of digital systems by leveraging individuals' unique physiological characteristics. This study proposes a multimodal authentication system using deep learning approaches to integrate fingerprint images and electrocardiogram (ECG) signals. The datasets employed include FVC2004 for fingerprint data and ECG-ID for ECG signals. Four deep learning architectures—Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), CNN-LSTM, and Deep Neural Network (DNN)—are evaluated to compare their effectiveness in recognizing individual identity based on fused multimodal features. Feature extraction techniques include grayscale conversion, binarization, edge detection, minutiae extraction for fingerprint images, and R-peak–based segmentation for ECG signals. The extracted features are combined using a feature-level fusion strategy to form a unified representation. Experimental results indicate that the CNN model achieves the highest classification accuracy at 96.25%, followed by LSTM and DNN at 93.75%, while CNN-LSTM performs the lowest at 11.25%. Minutiae-based features consistently yield superior results across different models, highlighting the importance of local feature descriptors in fingerprint-based identification tasks. This research advances biometric authentication by demonstrating the effectiveness of feature-level fusion and CNN architecture for accurate and robust identity recognition. The proposed system shows strong potential for secure and adaptive biometric authentication in modern digital applications.
Implementation of Extra Trees Classifier and Chi-Square Feature Selection for Early Detection of Liver Disease Al Ghifari, Muhammad Akmal; Budiman, Irwan; Saragih, Triando Hamonangan; Mazdadi, Muhammad Itqan; Herteno, Rudy; Rozaq, Hasri Akbar Awal
Jurnal Teknik Informatika (Jutif) Vol. 6 No. 5 (2025): JUTIF Volume 6, Number 5, Oktober 2025
Publisher : Informatika, Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52436/1.jutif.2025.6.5.4261

Abstract

The imbalanced distribution of medical data poses challenges in accurately detecting liver disease, which is crucial as symptoms often remain unnoticed until advanced stages. This study examines the application of the Extra Trees Classifier algorithm and chi-square feature selection for early detection of liver disease. Compared to traditional methods like Random Forest and SVM, the Extra Trees Classifier offers enhanced computational efficiency and better handling of imbalanced datasets, while chi-square feature selection helps identify the most relevant medical indicators. The data consists of five medical variables likely to be laboratory test results from patient samples, with labels indicating classes A and B. The data is randomly divided with a ratio of 80% for each class. To address data imbalance, SMOTE technique was applied before the data was randomly split into a ratio of 80% for training and 20% for testing to ensure effective learning and testing of the model's performance. The results showed that with the help of chi-square feature selection, the Extra Trees Classifier algorithm could provide fairly accurate predictions in liver disease classification, with an accuracy of 82.6%, sensitivity of 85.5%, precision of 78.3%, and F1-Score of 81.7%. These results demonstrate significant improvement over existing methods, and the proposed approach can aid healthcare practitioners in making timely diagnostic decisions, potentially reducing mortality rates through early intervention in liver disease cases.
Game Development of Banjar Archive for Interactive Cultural Education Ultilizing Large Language Models Adi Mu'Ammar, Rifqi; Abadi, Friska; Budiman, Irwan; Adi Nugroho, Radityo; Turianto Nugrahadi, Dodon
Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control Vol. 10, No. 4, November 2025
Publisher : Universitas Muhammadiyah Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22219/kinetik.v10i4.2294

Abstract

The preservation of Banjar cultural heritage is threatened by globalization and the fading interest of younger generations. This study addressed these challenges by developing an interactive educational game using the Game Development Life Cycle (GDLC) framework and integrating Large Language Models (LLMs) for adaptive and immersive player interactions. The six stages of GDLC namely initiation, pre-production, production, testing, beta, and release were systematically applied, resulting in a game that blends dynamic narratives to engage players while educating them about Banjar culture. Black Box Testing verified 14 test scenarios that all passed successfully, ensuring system stability and reliability. Additionally, user experience evaluation using the Game Experience Questionnaire (GEQ) highlighted high levels of immersion (4.936), competence (4.448), flow (3.124) and positive affect (4.976) among players, with minimal reported tension (1), challenge (1.744) and negative affect (1.07). These results demonstrated that the game successfully balances educational goals with engaging gameplay, fostering meaningful connections to Banjar heritage. By leveraging LLM technology, the game enhances interactivity, offering an innovative approach to Banjar cultural preservation in the digital era. This research extends the existing body of knowledge on AI-driven gamification strategies in heritage conservation with a specific focus on Banjar culture.